chrono/datetime/mod.rs
1// This is a part of Chrono.
2// See README.md and LICENSE.txt for details.
3
4//! ISO 8601 date and time with time zone.
5
6#[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
7use alloc::string::String;
8use core::borrow::Borrow;
9use core::cmp::Ordering;
10use core::fmt::Write;
11use core::ops::{Add, AddAssign, Sub, SubAssign};
12use core::time::Duration;
13use core::{fmt, hash, str};
14#[cfg(feature = "std")]
15use std::time::{SystemTime, UNIX_EPOCH};
16
17#[allow(deprecated)]
18use crate::Date;
19#[cfg(all(feature = "unstable-locales", feature = "alloc"))]
20use crate::format::Locale;
21#[cfg(feature = "alloc")]
22use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339};
23use crate::format::{
24 Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse,
25 parse_and_remainder, parse_rfc3339,
26};
27use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
28#[cfg(feature = "clock")]
29use crate::offset::Local;
30use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc};
31use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
32use crate::{expect, try_opt};
33
34#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35use rkyv::{Archive, Deserialize, Serialize};
36
37/// documented at re-export site
38#[cfg(feature = "serde")]
39pub(super) mod serde;
40
41#[cfg(test)]
42mod tests;
43
44/// ISO 8601 combined date and time with time zone.
45///
46/// There are some constructors implemented here (the `from_*` methods), but
47/// the general-purpose constructors are all via the methods on the
48/// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
49#[derive(Clone)]
50#[cfg_attr(
51 any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
52 derive(Archive, Deserialize, Serialize),
53 archive(compare(PartialEq, PartialOrd))
54)]
55#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
56pub struct DateTime<Tz: TimeZone> {
57 datetime: NaiveDateTime,
58 offset: Tz::Offset,
59}
60
61/// The minimum possible `DateTime<Utc>`.
62#[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
63pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
64/// The maximum possible `DateTime<Utc>`.
65#[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
66pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
67
68impl<Tz: TimeZone> DateTime<Tz> {
69 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
70 ///
71 /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
72 /// passing it through FFI.
73 ///
74 /// For regular use you will probably want to use a method such as
75 /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
76 ///
77 /// # Example
78 ///
79 /// ```
80 /// # #[cfg(feature = "clock")] {
81 /// use chrono::{DateTime, Local};
82 ///
83 /// let dt = Local::now();
84 /// // Get components
85 /// let naive_utc = dt.naive_utc();
86 /// let offset = dt.offset().clone();
87 /// // Serialize, pass through FFI... and recreate the `DateTime`:
88 /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
89 /// assert_eq!(dt, dt_new);
90 /// # }
91 /// ```
92 #[inline]
93 #[must_use]
94 pub const fn from_naive_utc_and_offset(
95 datetime: NaiveDateTime,
96 offset: Tz::Offset,
97 ) -> DateTime<Tz> {
98 DateTime { datetime, offset }
99 }
100
101 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
102 #[inline]
103 #[must_use]
104 #[deprecated(
105 since = "0.4.27",
106 note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
107 )]
108 pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
109 DateTime { datetime, offset }
110 }
111
112 /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
113 ///
114 /// # Panics
115 ///
116 /// Panics if the local datetime can't be converted to UTC because it would be out of range.
117 ///
118 /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
119 /// and the offset from UTC pushes it beyond that.
120 #[inline]
121 #[must_use]
122 #[deprecated(
123 since = "0.4.27",
124 note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
125 )]
126 pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
127 let datetime_utc = datetime - offset.fix();
128
129 DateTime { datetime: datetime_utc, offset }
130 }
131
132 /// Retrieves the date component with an associated timezone.
133 ///
134 /// Unless you are immediately planning on turning this into a `DateTime`
135 /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
136 ///
137 /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
138 /// so should be preferred to [`Date`] any time you truly want to operate on dates.
139 ///
140 /// # Panics
141 ///
142 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
143 /// method will panic if the offset from UTC would push the local date outside of the
144 /// representable range of a [`Date`].
145 #[inline]
146 #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
147 #[allow(deprecated)]
148 #[must_use]
149 pub fn date(&self) -> Date<Tz> {
150 Date::from_utc(self.naive_local().date(), self.offset.clone())
151 }
152
153 /// Retrieves the date component.
154 ///
155 /// # Panics
156 ///
157 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
158 /// method will panic if the offset from UTC would push the local date outside of the
159 /// representable range of a [`NaiveDate`].
160 ///
161 /// # Example
162 ///
163 /// ```
164 /// use chrono::prelude::*;
165 ///
166 /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
167 /// let other: DateTime<FixedOffset> =
168 /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169 /// assert_eq!(date.date_naive(), other.date_naive());
170 /// ```
171 #[inline]
172 #[must_use]
173 pub fn date_naive(&self) -> NaiveDate {
174 self.naive_local().date()
175 }
176
177 /// Retrieves the time component.
178 #[inline]
179 #[must_use]
180 pub fn time(&self) -> NaiveTime {
181 self.datetime.time() + self.offset.fix()
182 }
183
184 /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
185 /// (aka "UNIX timestamp").
186 ///
187 /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
188 /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
189 ///
190 /// ```
191 /// use chrono::{DateTime, TimeZone, Utc};
192 ///
193 /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
194 /// assert_eq!(dt.timestamp(), 1431648000);
195 ///
196 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
197 /// ```
198 #[inline]
199 #[must_use]
200 pub const fn timestamp(&self) -> i64 {
201 let gregorian_day = self.datetime.date().num_days_from_ce() as i64;
202 let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64;
203 (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
204 }
205
206 /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207 ///
208 /// # Example
209 ///
210 /// ```
211 /// use chrono::{NaiveDate, Utc};
212 ///
213 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
214 /// .unwrap()
215 /// .and_hms_milli_opt(0, 0, 1, 444)
216 /// .unwrap()
217 /// .and_local_timezone(Utc)
218 /// .unwrap();
219 /// assert_eq!(dt.timestamp_millis(), 1_444);
220 ///
221 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
222 /// .unwrap()
223 /// .and_hms_milli_opt(1, 46, 40, 555)
224 /// .unwrap()
225 /// .and_local_timezone(Utc)
226 /// .unwrap();
227 /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
228 /// ```
229 #[inline]
230 #[must_use]
231 pub const fn timestamp_millis(&self) -> i64 {
232 let as_ms = self.timestamp() * 1000;
233 as_ms + self.timestamp_subsec_millis() as i64
234 }
235
236 /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
237 ///
238 /// # Example
239 ///
240 /// ```
241 /// use chrono::{NaiveDate, Utc};
242 ///
243 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
244 /// .unwrap()
245 /// .and_hms_micro_opt(0, 0, 1, 444)
246 /// .unwrap()
247 /// .and_local_timezone(Utc)
248 /// .unwrap();
249 /// assert_eq!(dt.timestamp_micros(), 1_000_444);
250 ///
251 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
252 /// .unwrap()
253 /// .and_hms_micro_opt(1, 46, 40, 555)
254 /// .unwrap()
255 /// .and_local_timezone(Utc)
256 /// .unwrap();
257 /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
258 /// ```
259 #[inline]
260 #[must_use]
261 pub const fn timestamp_micros(&self) -> i64 {
262 let as_us = self.timestamp() * 1_000_000;
263 as_us + self.timestamp_subsec_micros() as i64
264 }
265
266 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
267 ///
268 /// # Panics
269 ///
270 /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
271 /// an out of range `DateTime`.
272 ///
273 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
274 /// and 2262-04-11T23:47:16.854775807.
275 #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
276 #[inline]
277 #[must_use]
278 pub const fn timestamp_nanos(&self) -> i64 {
279 expect(
280 self.timestamp_nanos_opt(),
281 "value can not be represented in a timestamp with nanosecond precision.",
282 )
283 }
284
285 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
286 ///
287 /// # Errors
288 ///
289 /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
290 /// `None` on an out of range `DateTime`.
291 ///
292 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
293 /// and 2262-04-11T23:47:16.854775807.
294 ///
295 /// # Example
296 ///
297 /// ```
298 /// use chrono::{NaiveDate, Utc};
299 ///
300 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
301 /// .unwrap()
302 /// .and_hms_nano_opt(0, 0, 1, 444)
303 /// .unwrap()
304 /// .and_local_timezone(Utc)
305 /// .unwrap();
306 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
307 ///
308 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
309 /// .unwrap()
310 /// .and_hms_nano_opt(1, 46, 40, 555)
311 /// .unwrap()
312 /// .and_local_timezone(Utc)
313 /// .unwrap();
314 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
315 ///
316 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
317 /// .unwrap()
318 /// .and_hms_nano_opt(0, 12, 43, 145_224_192)
319 /// .unwrap()
320 /// .and_local_timezone(Utc)
321 /// .unwrap();
322 /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
323 ///
324 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
325 /// .unwrap()
326 /// .and_hms_nano_opt(23, 47, 16, 854_775_807)
327 /// .unwrap()
328 /// .and_local_timezone(Utc)
329 /// .unwrap();
330 /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
331 ///
332 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
333 /// .unwrap()
334 /// .and_hms_nano_opt(0, 12, 43, 145_224_191)
335 /// .unwrap()
336 /// .and_local_timezone(Utc)
337 /// .unwrap();
338 /// assert_eq!(dt.timestamp_nanos_opt(), None);
339 ///
340 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
341 /// .unwrap()
342 /// .and_hms_nano_opt(23, 47, 16, 854_775_808)
343 /// .unwrap()
344 /// .and_local_timezone(Utc)
345 /// .unwrap();
346 /// assert_eq!(dt.timestamp_nanos_opt(), None);
347 /// ```
348 #[inline]
349 #[must_use]
350 pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
351 let mut timestamp = self.timestamp();
352 let mut subsec_nanos = self.timestamp_subsec_nanos() as i64;
353 // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while
354 // the final value can be represented as an `i64`.
355 // As workaround we converting the negative case to:
356 // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)``
357 //
358 // Also see <https://github.com/chronotope/chrono/issues/1289>.
359 if timestamp < 0 {
360 subsec_nanos -= 1_000_000_000;
361 timestamp += 1;
362 }
363 try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos)
364 }
365
366 /// Returns the number of milliseconds since the last second boundary.
367 ///
368 /// In event of a leap second this may exceed 999.
369 #[inline]
370 #[must_use]
371 pub const fn timestamp_subsec_millis(&self) -> u32 {
372 self.timestamp_subsec_nanos() / 1_000_000
373 }
374
375 /// Returns the number of microseconds since the last second boundary.
376 ///
377 /// In event of a leap second this may exceed 999,999.
378 #[inline]
379 #[must_use]
380 pub const fn timestamp_subsec_micros(&self) -> u32 {
381 self.timestamp_subsec_nanos() / 1_000
382 }
383
384 /// Returns the number of nanoseconds since the last second boundary
385 ///
386 /// In event of a leap second this may exceed 999,999,999.
387 #[inline]
388 #[must_use]
389 pub const fn timestamp_subsec_nanos(&self) -> u32 {
390 self.datetime.time().nanosecond()
391 }
392
393 /// Retrieves an associated offset from UTC.
394 #[inline]
395 #[must_use]
396 pub const fn offset(&self) -> &Tz::Offset {
397 &self.offset
398 }
399
400 /// Retrieves an associated time zone.
401 #[inline]
402 #[must_use]
403 pub fn timezone(&self) -> Tz {
404 TimeZone::from_offset(&self.offset)
405 }
406
407 /// Changes the associated time zone.
408 /// The returned `DateTime` references the same instant of time from the perspective of the
409 /// provided time zone.
410 #[inline]
411 #[must_use]
412 pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
413 tz.from_utc_datetime(&self.datetime)
414 }
415
416 /// Fix the offset from UTC to its current value, dropping the associated timezone information.
417 /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
418 #[inline]
419 #[must_use]
420 pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
421 self.with_timezone(&self.offset().fix())
422 }
423
424 /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
425 /// information.
426 #[inline]
427 #[must_use]
428 pub const fn to_utc(&self) -> DateTime<Utc> {
429 DateTime { datetime: self.datetime, offset: Utc }
430 }
431
432 /// Adds given `TimeDelta` to the current date and time.
433 ///
434 /// # Errors
435 ///
436 /// Returns `None` if the resulting date would be out of range.
437 #[inline]
438 #[must_use]
439 pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
440 let datetime = self.datetime.checked_add_signed(rhs)?;
441 let tz = self.timezone();
442 Some(tz.from_utc_datetime(&datetime))
443 }
444
445 /// Adds given `Months` to the current date and time.
446 ///
447 /// Uses the last day of the month if the day does not exist in the resulting month.
448 ///
449 /// See [`NaiveDate::checked_add_months`] for more details on behavior.
450 ///
451 /// # Errors
452 ///
453 /// Returns `None` if:
454 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455 /// daylight saving time transition.
456 /// - The resulting UTC datetime would be out of range.
457 /// - The resulting local datetime would be out of range (unless `months` is zero).
458 #[must_use]
459 pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> {
460 // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate
461 // the resulting date, with which we can return `Some` even for an out of range local
462 // datetime.
463 self.overflowing_naive_local()
464 .checked_add_months(months)?
465 .and_local_timezone(Tz::from_offset(&self.offset))
466 .single()
467 }
468
469 /// Subtracts given `TimeDelta` from the current date and time.
470 ///
471 /// # Errors
472 ///
473 /// Returns `None` if the resulting date would be out of range.
474 #[inline]
475 #[must_use]
476 pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
477 let datetime = self.datetime.checked_sub_signed(rhs)?;
478 let tz = self.timezone();
479 Some(tz.from_utc_datetime(&datetime))
480 }
481
482 /// Subtracts given `Months` from the current date and time.
483 ///
484 /// Uses the last day of the month if the day does not exist in the resulting month.
485 ///
486 /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
487 ///
488 /// # Errors
489 ///
490 /// Returns `None` if:
491 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
492 /// daylight saving time transition.
493 /// - The resulting UTC datetime would be out of range.
494 /// - The resulting local datetime would be out of range (unless `months` is zero).
495 #[must_use]
496 pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> {
497 // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate
498 // the resulting date, with which we can return `Some` even for an out of range local
499 // datetime.
500 self.overflowing_naive_local()
501 .checked_sub_months(months)?
502 .and_local_timezone(Tz::from_offset(&self.offset))
503 .single()
504 }
505
506 /// Add a duration in [`Days`] to the date part of the `DateTime`.
507 ///
508 /// # Errors
509 ///
510 /// Returns `None` if:
511 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
512 /// daylight saving time transition.
513 /// - The resulting UTC datetime would be out of range.
514 /// - The resulting local datetime would be out of range (unless `days` is zero).
515 #[must_use]
516 pub fn checked_add_days(self, days: Days) -> Option<Self> {
517 if days == Days::new(0) {
518 return Some(self);
519 }
520 // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
521 // does not validate the resulting date. This allows us to return `Some` even for an out of
522 // range local datetime when adding `Days(0)`.
523 self.overflowing_naive_local()
524 .checked_add_days(days)
525 .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
526 .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC)
527 }
528
529 /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
530 ///
531 /// # Errors
532 ///
533 /// Returns `None` if:
534 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
535 /// daylight saving time transition.
536 /// - The resulting UTC datetime would be out of range.
537 /// - The resulting local datetime would be out of range (unless `days` is zero).
538 #[must_use]
539 pub fn checked_sub_days(self, days: Days) -> Option<Self> {
540 // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
541 // does not validate the resulting date. This allows us to return `Some` even for an out of
542 // range local datetime when adding `Days(0)`.
543 self.overflowing_naive_local()
544 .checked_sub_days(days)
545 .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
546 .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC)
547 }
548
549 /// Subtracts another `DateTime` from the current date and time.
550 /// This does not overflow or underflow at all.
551 #[inline]
552 #[must_use]
553 pub fn signed_duration_since<Tz2: TimeZone>(
554 self,
555 rhs: impl Borrow<DateTime<Tz2>>,
556 ) -> TimeDelta {
557 self.datetime.signed_duration_since(rhs.borrow().datetime)
558 }
559
560 /// Returns a view to the naive UTC datetime.
561 #[inline]
562 #[must_use]
563 pub const fn naive_utc(&self) -> NaiveDateTime {
564 self.datetime
565 }
566
567 /// Returns a view to the naive local datetime.
568 ///
569 /// # Panics
570 ///
571 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
572 /// method will panic if the offset from UTC would push the local datetime outside of the
573 /// representable range of a [`NaiveDateTime`].
574 #[inline]
575 #[must_use]
576 pub fn naive_local(&self) -> NaiveDateTime {
577 self.datetime
578 .checked_add_offset(self.offset.fix())
579 .expect("Local time out of range for `NaiveDateTime`")
580 }
581
582 /// Returns the naive local datetime.
583 ///
584 /// This makes use of the buffer space outside of the representable range of values of
585 /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
586 /// outside chrono.
587 #[inline]
588 #[must_use]
589 pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
590 self.datetime.overflowing_add_offset(self.offset.fix())
591 }
592
593 /// Retrieve the elapsed years from now to the given [`DateTime`].
594 ///
595 /// # Errors
596 ///
597 /// Returns `None` if `base > self`.
598 #[must_use]
599 pub fn years_since(&self, base: Self) -> Option<u32> {
600 let mut years = self.year() - base.year();
601 let earlier_time =
602 (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
603
604 years -= match earlier_time {
605 true => 1,
606 false => 0,
607 };
608
609 match years >= 0 {
610 true => Some(years as u32),
611 false => None,
612 }
613 }
614
615 /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
616 ///
617 /// # Panics
618 ///
619 /// Panics if the date can not be represented in this format: the year may not be negative and
620 /// can not have more than 4 digits.
621 #[cfg(feature = "alloc")]
622 #[must_use]
623 pub fn to_rfc2822(&self) -> String {
624 let mut result = String::with_capacity(32);
625 write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
626 .expect("writing rfc2822 datetime to string should never fail");
627 result
628 }
629
630 /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
631 #[cfg(feature = "alloc")]
632 #[must_use]
633 pub fn to_rfc3339(&self) -> String {
634 // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
635 let mut result = String::with_capacity(32);
636 let naive = self.overflowing_naive_local();
637 let offset = self.offset.fix();
638 write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
639 .expect("writing rfc3339 datetime to string should never fail");
640 result
641 }
642
643 /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
644 /// formatted as per `SecondsFormat`.
645 ///
646 /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
647 /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
648 /// [`Fixed::TimezoneOffsetColon`]
649 ///
650 /// # Examples
651 ///
652 /// ```rust
653 /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate};
654 /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26)
655 /// .unwrap()
656 /// .and_hms_micro_opt(18, 30, 9, 453_829)
657 /// .unwrap()
658 /// .and_utc();
659 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00");
660 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z");
661 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z");
662 ///
663 /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
664 /// let dt = pst
665 /// .from_local_datetime(
666 /// &NaiveDate::from_ymd_opt(2018, 1, 26)
667 /// .unwrap()
668 /// .and_hms_micro_opt(10, 30, 9, 453_829)
669 /// .unwrap(),
670 /// )
671 /// .unwrap();
672 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00");
673 /// ```
674 #[cfg(feature = "alloc")]
675 #[must_use]
676 pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
677 let mut result = String::with_capacity(38);
678 write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
679 .expect("writing rfc3339 datetime to string should never fail");
680 result
681 }
682
683 /// Set the time to a new fixed time on the existing date.
684 ///
685 /// # Errors
686 ///
687 /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a
688 /// `DateTime`, and `with_time` would push the value in UTC out of range.
689 ///
690 /// # Example
691 ///
692 /// ```
693 /// # #[cfg(feature = "clock")] {
694 /// use chrono::{Local, NaiveTime};
695 ///
696 /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap();
697 /// let today_noon = Local::now().with_time(noon);
698 /// let today_midnight = Local::now().with_time(NaiveTime::MIN);
699 ///
700 /// assert_eq!(today_noon.single().unwrap().time(), noon);
701 /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN);
702 /// # }
703 /// ```
704 #[must_use]
705 pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> {
706 self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time))
707 }
708
709 /// The minimum possible `DateTime<Utc>`.
710 pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
711 /// The maximum possible `DateTime<Utc>`.
712 pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
713}
714
715impl DateTime<Utc> {
716 /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
717 /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
718 /// and the number of nanoseconds since the last whole non-leap second.
719 ///
720 /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
721 /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
722 ///
723 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
724 /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
725 ///
726 /// The nanosecond part can exceed 1,000,000,000 in order to represent a
727 /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
728 /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
729 ///
730 /// # Errors
731 ///
732 /// Returns `None` on out-of-range number of seconds and/or
733 /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
734 ///
735 /// # Example
736 ///
737 /// ```
738 /// use chrono::DateTime;
739 ///
740 /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp");
741 ///
742 /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
743 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
744 /// ```
745 #[inline]
746 #[must_use]
747 pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
748 let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
749 let secs = secs.rem_euclid(86_400);
750 if days < i32::MIN as i64 || days > i32::MAX as i64 {
751 return None;
752 }
753 let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
754 let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
755 Some(date.and_time(time).and_utc())
756 }
757
758 /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds
759 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
760 ///
761 /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis).
762 ///
763 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
764 /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
765 ///
766 /// # Errors
767 ///
768 /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
769 ///
770 /// # Example
771 ///
772 /// ```
773 /// use chrono::DateTime;
774 ///
775 /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp");
776 ///
777 /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
778 /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
779 /// ```
780 #[inline]
781 #[must_use]
782 pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
783 let secs = millis.div_euclid(1000);
784 let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000;
785 Self::from_timestamp(secs, nsecs)
786 }
787
788 /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds
789 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
790 ///
791 /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros).
792 ///
793 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
794 /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`].
795 ///
796 /// # Errors
797 ///
798 /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime`
799 /// (more than ca. 262,000 years away from common era)
800 ///
801 /// # Example
802 ///
803 /// ```
804 /// use chrono::DateTime;
805 ///
806 /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC
807 /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
808 /// assert!(dt.is_some());
809 /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
810 ///
811 /// // Negative timestamps (before the UNIX epoch) are supported as well.
812 /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC
813 /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
814 /// assert!(dt.is_some());
815 /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
816 /// ```
817 #[inline]
818 #[must_use]
819 pub const fn from_timestamp_micros(micros: i64) -> Option<Self> {
820 let secs = micros.div_euclid(1_000_000);
821 let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000;
822 Self::from_timestamp(secs, nsecs)
823 }
824
825 /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds
826 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
827 ///
828 /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos).
829 ///
830 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
831 /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`].
832 ///
833 /// The UNIX epoch starts on midnight, January 1, 1970, UTC.
834 ///
835 /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can
836 /// be represented as a `DateTime` this method never fails.
837 ///
838 /// # Example
839 ///
840 /// ```
841 /// use chrono::DateTime;
842 ///
843 /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC
844 /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
845 /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
846 ///
847 /// // Negative timestamps (before the UNIX epoch) are supported as well.
848 /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC
849 /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
850 /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
851 /// ```
852 #[inline]
853 #[must_use]
854 pub const fn from_timestamp_nanos(nanos: i64) -> Self {
855 let secs = nanos.div_euclid(1_000_000_000);
856 let nsecs = nanos.rem_euclid(1_000_000_000) as u32;
857 expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range")
858 }
859
860 /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
861 pub const UNIX_EPOCH: Self =
862 expect(NaiveDate::from_ymd_opt(1970, 1, 1), "").and_time(NaiveTime::MIN).and_utc();
863}
864
865impl Default for DateTime<Utc> {
866 fn default() -> Self {
867 Utc.from_utc_datetime(&NaiveDateTime::default())
868 }
869}
870
871#[cfg(feature = "clock")]
872impl Default for DateTime<Local> {
873 fn default() -> Self {
874 Local.from_utc_datetime(&NaiveDateTime::default())
875 }
876}
877
878impl Default for DateTime<FixedOffset> {
879 fn default() -> Self {
880 FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
881 }
882}
883
884/// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
885impl From<DateTime<Utc>> for DateTime<FixedOffset> {
886 /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
887 ///
888 /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
889 /// this will be created with a fixed timezone offset of 0.
890 fn from(src: DateTime<Utc>) -> Self {
891 src.with_timezone(&FixedOffset::east_opt(0).unwrap())
892 }
893}
894
895/// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
896#[cfg(feature = "clock")]
897impl From<DateTime<Utc>> for DateTime<Local> {
898 /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
899 ///
900 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
901 fn from(src: DateTime<Utc>) -> Self {
902 src.with_timezone(&Local)
903 }
904}
905
906/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
907impl From<DateTime<FixedOffset>> for DateTime<Utc> {
908 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
909 ///
910 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
911 /// difference.
912 fn from(src: DateTime<FixedOffset>) -> Self {
913 src.with_timezone(&Utc)
914 }
915}
916
917/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
918#[cfg(feature = "clock")]
919impl From<DateTime<FixedOffset>> for DateTime<Local> {
920 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
921 ///
922 /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
923 /// time.
924 fn from(src: DateTime<FixedOffset>) -> Self {
925 src.with_timezone(&Local)
926 }
927}
928
929/// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
930#[cfg(feature = "clock")]
931impl From<DateTime<Local>> for DateTime<Utc> {
932 /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
933 ///
934 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
935 /// timezones.
936 fn from(src: DateTime<Local>) -> Self {
937 src.with_timezone(&Utc)
938 }
939}
940
941/// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
942#[cfg(feature = "clock")]
943impl From<DateTime<Local>> for DateTime<FixedOffset> {
944 /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
945 ///
946 /// Conversion is performed via [`DateTime::with_timezone`].
947 fn from(src: DateTime<Local>) -> Self {
948 src.with_timezone(&src.offset().fix())
949 }
950}
951
952/// Maps the local datetime to other datetime with given conversion function.
953fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
954where
955 F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
956{
957 f(dt.overflowing_naive_local())
958 .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
959 .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
960}
961
962impl DateTime<FixedOffset> {
963 /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
964 ///
965 /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
966 /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
967 ///
968 /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
969 /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
970 /// 2008.
971 ///
972 /// # Support for the obsolete date format
973 ///
974 /// - A 2-digit year is interpreted to be a year in 1950-2049.
975 /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
976 /// [Appendix A.5]
977 /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
978 /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
979 /// the meaning is now ambiguous, the standard says they should be considered as `-0000`
980 /// unless there is out-of-band information confirming their meaning.
981 /// The exception is `Z`, which remains identical to `+0000`.
982 ///
983 /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
984 /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
985 ///
986 /// # Example
987 ///
988 /// ```
989 /// # use chrono::{DateTime, FixedOffset, TimeZone};
990 /// assert_eq!(
991 /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
992 /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
993 /// );
994 /// ```
995 pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
996 const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
997 let mut parsed = Parsed::new();
998 parse(&mut parsed, s, ITEMS.iter())?;
999 parsed.to_datetime()
1000 }
1001
1002 /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
1003 ///
1004 /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
1005 /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
1006 /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
1007 /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
1008 /// encountered variety of RFC 3339 formats.
1009 ///
1010 /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
1011 /// values in a wide range of formats, only some of which represent actual date-and-time
1012 /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
1013 /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
1014 /// values (or the other way around).
1015 pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1016 let mut parsed = Parsed::new();
1017 let (s, _) = parse_rfc3339(&mut parsed, s)?;
1018 if !s.is_empty() {
1019 return Err(TOO_LONG);
1020 }
1021 parsed.to_datetime()
1022 }
1023
1024 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
1025 ///
1026 /// Note that this method *requires a timezone* in the input string. See
1027 /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
1028 /// for a version that does not require a timezone in the to-be-parsed str. The returned
1029 /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
1030 ///
1031 /// See the [`format::strftime` module](crate::format::strftime) for supported format
1032 /// sequences.
1033 ///
1034 /// # Example
1035 ///
1036 /// ```rust
1037 /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone};
1038 ///
1039 /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
1040 /// assert_eq!(
1041 /// dt,
1042 /// Ok(FixedOffset::east_opt(0)
1043 /// .unwrap()
1044 /// .from_local_datetime(
1045 /// &NaiveDate::from_ymd_opt(1983, 4, 13)
1046 /// .unwrap()
1047 /// .and_hms_milli_opt(12, 9, 14, 274)
1048 /// .unwrap()
1049 /// )
1050 /// .unwrap())
1051 /// );
1052 /// ```
1053 pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
1054 let mut parsed = Parsed::new();
1055 parse(&mut parsed, s, StrftimeItems::new(fmt))?;
1056 parsed.to_datetime()
1057 }
1058
1059 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
1060 /// slice with the remaining portion of the string.
1061 ///
1062 /// Note that this method *requires a timezone* in the input string. See
1063 /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
1064 /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
1065 /// reflecting the parsed timezone.
1066 ///
1067 /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
1068 /// sequences.
1069 ///
1070 /// Similar to [`parse_from_str`](#method.parse_from_str).
1071 ///
1072 /// # Example
1073 ///
1074 /// ```rust
1075 /// # use chrono::{DateTime, FixedOffset, TimeZone};
1076 /// let (datetime, remainder) = DateTime::parse_and_remainder(
1077 /// "2015-02-18 23:16:09 +0200 trailing text",
1078 /// "%Y-%m-%d %H:%M:%S %z",
1079 /// )
1080 /// .unwrap();
1081 /// assert_eq!(
1082 /// datetime,
1083 /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1084 /// );
1085 /// assert_eq!(remainder, " trailing text");
1086 /// ```
1087 pub fn parse_and_remainder<'a>(
1088 s: &'a str,
1089 fmt: &str,
1090 ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
1091 let mut parsed = Parsed::new();
1092 let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
1093 parsed.to_datetime().map(|d| (d, remainder))
1094 }
1095}
1096
1097impl<Tz: TimeZone> DateTime<Tz>
1098where
1099 Tz::Offset: fmt::Display,
1100{
1101 /// Formats the combined date and time with the specified formatting items.
1102 #[cfg(feature = "alloc")]
1103 #[inline]
1104 #[must_use]
1105 pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
1106 where
1107 I: Iterator<Item = B> + Clone,
1108 B: Borrow<Item<'a>>,
1109 {
1110 let local = self.overflowing_naive_local();
1111 DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
1112 }
1113
1114 /// Formats the combined date and time per the specified format string.
1115 ///
1116 /// See the [`crate::format::strftime`] module for the supported escape sequences.
1117 ///
1118 /// # Example
1119 /// ```rust
1120 /// use chrono::prelude::*;
1121 ///
1122 /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
1123 /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
1124 /// assert_eq!(formatted, "02/04/2017 12:50");
1125 /// ```
1126 #[cfg(feature = "alloc")]
1127 #[inline]
1128 #[must_use]
1129 pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
1130 self.format_with_items(StrftimeItems::new(fmt))
1131 }
1132
1133 /// Formats the combined date and time with the specified formatting items and locale.
1134 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1135 #[inline]
1136 #[must_use]
1137 pub fn format_localized_with_items<'a, I, B>(
1138 &self,
1139 items: I,
1140 locale: Locale,
1141 ) -> DelayedFormat<I>
1142 where
1143 I: Iterator<Item = B> + Clone,
1144 B: Borrow<Item<'a>>,
1145 {
1146 let local = self.overflowing_naive_local();
1147 DelayedFormat::new_with_offset_and_locale(
1148 Some(local.date()),
1149 Some(local.time()),
1150 &self.offset,
1151 items,
1152 locale,
1153 )
1154 }
1155
1156 /// Formats the combined date and time per the specified format string and
1157 /// locale.
1158 ///
1159 /// See the [`crate::format::strftime`] module on the supported escape
1160 /// sequences.
1161 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1162 #[inline]
1163 #[must_use]
1164 pub fn format_localized<'a>(
1165 &self,
1166 fmt: &'a str,
1167 locale: Locale,
1168 ) -> DelayedFormat<StrftimeItems<'a>> {
1169 self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
1170 }
1171}
1172
1173impl<Tz: TimeZone> Datelike for DateTime<Tz> {
1174 #[inline]
1175 fn year(&self) -> i32 {
1176 self.overflowing_naive_local().year()
1177 }
1178 #[inline]
1179 fn month(&self) -> u32 {
1180 self.overflowing_naive_local().month()
1181 }
1182 #[inline]
1183 fn month0(&self) -> u32 {
1184 self.overflowing_naive_local().month0()
1185 }
1186 #[inline]
1187 fn day(&self) -> u32 {
1188 self.overflowing_naive_local().day()
1189 }
1190 #[inline]
1191 fn day0(&self) -> u32 {
1192 self.overflowing_naive_local().day0()
1193 }
1194 #[inline]
1195 fn ordinal(&self) -> u32 {
1196 self.overflowing_naive_local().ordinal()
1197 }
1198 #[inline]
1199 fn ordinal0(&self) -> u32 {
1200 self.overflowing_naive_local().ordinal0()
1201 }
1202 #[inline]
1203 fn weekday(&self) -> Weekday {
1204 self.overflowing_naive_local().weekday()
1205 }
1206 #[inline]
1207 fn iso_week(&self) -> IsoWeek {
1208 self.overflowing_naive_local().iso_week()
1209 }
1210
1211 #[inline]
1212 /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1213 ///
1214 /// See also the [`NaiveDate::with_year`] method.
1215 ///
1216 /// # Errors
1217 ///
1218 /// Returns `None` if:
1219 /// - The resulting date does not exist (February 29 in a non-leap year).
1220 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1221 /// daylight saving time transition.
1222 /// - The resulting UTC datetime would be out of range.
1223 /// - The resulting local datetime would be out of range (unless the year remains the same).
1224 fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1225 map_local(self, |dt| match dt.year() == year {
1226 true => Some(dt),
1227 false => dt.with_year(year),
1228 })
1229 }
1230
1231 /// Makes a new `DateTime` with the month number (starting from 1) changed.
1232 ///
1233 /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist.
1234 ///
1235 /// See also the [`NaiveDate::with_month`] method.
1236 ///
1237 /// # Errors
1238 ///
1239 /// Returns `None` if:
1240 /// - The resulting date does not exist (for example `month(4)` when day of the month is 31).
1241 /// - The value for `month` is invalid.
1242 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1243 /// daylight saving time transition.
1244 #[inline]
1245 fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1246 map_local(self, |datetime| datetime.with_month(month))
1247 }
1248
1249 /// Makes a new `DateTime` with the month number (starting from 0) changed.
1250 ///
1251 /// See also the [`NaiveDate::with_month0`] method.
1252 ///
1253 /// # Errors
1254 ///
1255 /// Returns `None` if:
1256 /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31).
1257 /// - The value for `month0` is invalid.
1258 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1259 /// daylight saving time transition.
1260 #[inline]
1261 fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1262 map_local(self, |datetime| datetime.with_month0(month0))
1263 }
1264
1265 /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1266 ///
1267 /// See also the [`NaiveDate::with_day`] method.
1268 ///
1269 /// # Errors
1270 ///
1271 /// Returns `None` if:
1272 /// - The resulting date does not exist (for example `day(31)` in April).
1273 /// - The value for `day` is invalid.
1274 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1275 /// daylight saving time transition.
1276 #[inline]
1277 fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1278 map_local(self, |datetime| datetime.with_day(day))
1279 }
1280
1281 /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1282 ///
1283 /// See also the [`NaiveDate::with_day0`] method.
1284 ///
1285 /// # Errors
1286 ///
1287 /// Returns `None` if:
1288 /// - The resulting date does not exist (for example `day(30)` in April).
1289 /// - The value for `day0` is invalid.
1290 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1291 /// daylight saving time transition.
1292 #[inline]
1293 fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1294 map_local(self, |datetime| datetime.with_day0(day0))
1295 }
1296
1297 /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1298 ///
1299 /// See also the [`NaiveDate::with_ordinal`] method.
1300 ///
1301 /// # Errors
1302 ///
1303 /// Returns `None` if:
1304 /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year).
1305 /// - The value for `ordinal` is invalid.
1306 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1307 /// daylight saving time transition.
1308 #[inline]
1309 fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1310 map_local(self, |datetime| datetime.with_ordinal(ordinal))
1311 }
1312
1313 /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1314 ///
1315 /// See also the [`NaiveDate::with_ordinal0`] method.
1316 ///
1317 /// # Errors
1318 ///
1319 /// Returns `None` if:
1320 /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year).
1321 /// - The value for `ordinal0` is invalid.
1322 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1323 /// daylight saving time transition.
1324 #[inline]
1325 fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1326 map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1327 }
1328}
1329
1330impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1331 #[inline]
1332 fn hour(&self) -> u32 {
1333 self.overflowing_naive_local().hour()
1334 }
1335 #[inline]
1336 fn minute(&self) -> u32 {
1337 self.overflowing_naive_local().minute()
1338 }
1339 #[inline]
1340 fn second(&self) -> u32 {
1341 self.overflowing_naive_local().second()
1342 }
1343 #[inline]
1344 fn nanosecond(&self) -> u32 {
1345 self.overflowing_naive_local().nanosecond()
1346 }
1347
1348 /// Makes a new `DateTime` with the hour number changed.
1349 ///
1350 /// See also the [`NaiveTime::with_hour`] method.
1351 ///
1352 /// # Errors
1353 ///
1354 /// Returns `None` if:
1355 /// - The value for `hour` is invalid.
1356 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1357 /// daylight saving time transition.
1358 #[inline]
1359 fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1360 map_local(self, |datetime| datetime.with_hour(hour))
1361 }
1362
1363 /// Makes a new `DateTime` with the minute number changed.
1364 ///
1365 /// See also the [`NaiveTime::with_minute`] method.
1366 ///
1367 /// # Errors
1368 ///
1369 /// - The value for `minute` is invalid.
1370 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1371 /// daylight saving time transition.
1372 #[inline]
1373 fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1374 map_local(self, |datetime| datetime.with_minute(min))
1375 }
1376
1377 /// Makes a new `DateTime` with the second number changed.
1378 ///
1379 /// As with the [`second`](#method.second) method,
1380 /// the input range is restricted to 0 through 59.
1381 ///
1382 /// See also the [`NaiveTime::with_second`] method.
1383 ///
1384 /// # Errors
1385 ///
1386 /// Returns `None` if:
1387 /// - The value for `second` is invalid.
1388 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1389 /// daylight saving time transition.
1390 #[inline]
1391 fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1392 map_local(self, |datetime| datetime.with_second(sec))
1393 }
1394
1395 /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1396 ///
1397 /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1398 /// As with the [`NaiveDateTime::nanosecond`] method,
1399 /// the input range can exceed 1,000,000,000 for leap seconds.
1400 ///
1401 /// See also the [`NaiveTime::with_nanosecond`] method.
1402 ///
1403 /// # Errors
1404 ///
1405 /// Returns `None` if `nanosecond >= 2,000,000,000`.
1406 #[inline]
1407 fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1408 map_local(self, |datetime| datetime.with_nanosecond(nano))
1409 }
1410}
1411
1412// We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can
1413// be `Copy`. Implement it manually if the two types we do have are `Copy`.
1414impl<Tz: TimeZone> Copy for DateTime<Tz>
1415where
1416 <Tz as TimeZone>::Offset: Copy,
1417 NaiveDateTime: Copy,
1418{
1419}
1420
1421impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
1422 fn eq(&self, other: &DateTime<Tz2>) -> bool {
1423 self.datetime == other.datetime
1424 }
1425}
1426
1427impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1428
1429impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1430 /// Compare two DateTimes based on their true time, ignoring time zones
1431 ///
1432 /// # Example
1433 ///
1434 /// ```
1435 /// use chrono::prelude::*;
1436 ///
1437 /// let earlier = Utc
1438 /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0)
1439 /// .unwrap()
1440 /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1441 /// let later = Utc
1442 /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0)
1443 /// .unwrap()
1444 /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1445 ///
1446 /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1447 /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1448 ///
1449 /// assert!(later > earlier);
1450 /// ```
1451 fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1452 self.datetime.partial_cmp(&other.datetime)
1453 }
1454}
1455
1456impl<Tz: TimeZone> Ord for DateTime<Tz> {
1457 fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1458 self.datetime.cmp(&other.datetime)
1459 }
1460}
1461
1462impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
1463 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1464 self.datetime.hash(state)
1465 }
1466}
1467
1468/// Add `TimeDelta` to `DateTime`.
1469///
1470/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1471/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1472/// the assumption becomes that **there is exactly a single leap second ever**.
1473///
1474/// # Panics
1475///
1476/// Panics if the resulting date would be out of range.
1477/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1478impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1479 type Output = DateTime<Tz>;
1480
1481 #[inline]
1482 fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1483 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1484 }
1485}
1486
1487/// Add `std::time::Duration` to `DateTime`.
1488///
1489/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1490/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1491/// the assumption becomes that **there is exactly a single leap second ever**.
1492///
1493/// # Panics
1494///
1495/// Panics if the resulting date would be out of range.
1496/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1497impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1498 type Output = DateTime<Tz>;
1499
1500 #[inline]
1501 fn add(self, rhs: Duration) -> DateTime<Tz> {
1502 let rhs = TimeDelta::from_std(rhs)
1503 .expect("overflow converting from core::time::Duration to TimeDelta");
1504 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1505 }
1506}
1507
1508/// Add-assign `chrono::Duration` to `DateTime`.
1509///
1510/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1511/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1512/// the assumption becomes that **there is exactly a single leap second ever**.
1513///
1514/// # Panics
1515///
1516/// Panics if the resulting date would be out of range.
1517/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1518impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1519 #[inline]
1520 fn add_assign(&mut self, rhs: TimeDelta) {
1521 let datetime =
1522 self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1523 let tz = self.timezone();
1524 *self = tz.from_utc_datetime(&datetime);
1525 }
1526}
1527
1528/// Add-assign `std::time::Duration` to `DateTime`.
1529///
1530/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1531/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1532/// the assumption becomes that **there is exactly a single leap second ever**.
1533///
1534/// # Panics
1535///
1536/// Panics if the resulting date would be out of range.
1537/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1538impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1539 #[inline]
1540 fn add_assign(&mut self, rhs: Duration) {
1541 let rhs = TimeDelta::from_std(rhs)
1542 .expect("overflow converting from core::time::Duration to TimeDelta");
1543 *self += rhs;
1544 }
1545}
1546
1547/// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1548///
1549/// # Panics
1550///
1551/// Panics if the resulting date would be out of range.
1552impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1553 type Output = DateTime<Tz>;
1554
1555 #[inline]
1556 fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1557 self.datetime =
1558 self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1559 self
1560 }
1561}
1562
1563/// Add `Months` to `DateTime`.
1564///
1565/// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1566/// details.
1567///
1568/// # Panics
1569///
1570/// Panics if:
1571/// - The resulting date would be out of range.
1572/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1573/// daylight saving time transition.
1574///
1575/// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1576impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1577 type Output = DateTime<Tz>;
1578
1579 fn add(self, rhs: Months) -> Self::Output {
1580 self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1581 }
1582}
1583
1584/// Subtract `TimeDelta` from `DateTime`.
1585///
1586/// This is the same as the addition with a negated `TimeDelta`.
1587///
1588/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1589/// second ever**, except when the `DateTime` itself represents a leap second in which case
1590/// the assumption becomes that **there is exactly a single leap second ever**.
1591///
1592/// # Panics
1593///
1594/// Panics if the resulting date would be out of range.
1595/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1596impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1597 type Output = DateTime<Tz>;
1598
1599 #[inline]
1600 fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1601 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1602 }
1603}
1604
1605/// Subtract `std::time::Duration` from `DateTime`.
1606///
1607/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1608/// second ever**, except when the `DateTime` itself represents a leap second in which case
1609/// the assumption becomes that **there is exactly a single leap second ever**.
1610///
1611/// # Panics
1612///
1613/// Panics if the resulting date would be out of range.
1614/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1615impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1616 type Output = DateTime<Tz>;
1617
1618 #[inline]
1619 fn sub(self, rhs: Duration) -> DateTime<Tz> {
1620 let rhs = TimeDelta::from_std(rhs)
1621 .expect("overflow converting from core::time::Duration to TimeDelta");
1622 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1623 }
1624}
1625
1626/// Subtract-assign `TimeDelta` from `DateTime`.
1627///
1628/// This is the same as the addition with a negated `TimeDelta`.
1629///
1630/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1631/// second ever**, except when the `DateTime` itself represents a leap second in which case
1632/// the assumption becomes that **there is exactly a single leap second ever**.
1633///
1634/// # Panics
1635///
1636/// Panics if the resulting date would be out of range.
1637/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1638impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1639 #[inline]
1640 fn sub_assign(&mut self, rhs: TimeDelta) {
1641 let datetime =
1642 self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1643 let tz = self.timezone();
1644 *self = tz.from_utc_datetime(&datetime)
1645 }
1646}
1647
1648/// Subtract-assign `std::time::Duration` from `DateTime`.
1649///
1650/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1651/// second ever**, except when the `DateTime` itself represents a leap second in which case
1652/// the assumption becomes that **there is exactly a single leap second ever**.
1653///
1654/// # Panics
1655///
1656/// Panics if the resulting date would be out of range.
1657/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1658impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1659 #[inline]
1660 fn sub_assign(&mut self, rhs: Duration) {
1661 let rhs = TimeDelta::from_std(rhs)
1662 .expect("overflow converting from core::time::Duration to TimeDelta");
1663 *self -= rhs;
1664 }
1665}
1666
1667/// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1668///
1669/// # Panics
1670///
1671/// Panics if the resulting date would be out of range.
1672impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1673 type Output = DateTime<Tz>;
1674
1675 #[inline]
1676 fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1677 self.datetime =
1678 self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1679 self
1680 }
1681}
1682
1683/// Subtract `Months` from `DateTime`.
1684///
1685/// The result will be clamped to valid days in the resulting month, see
1686/// [`DateTime<Tz>::checked_sub_months`] for details.
1687///
1688/// # Panics
1689///
1690/// Panics if:
1691/// - The resulting date would be out of range.
1692/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1693/// daylight saving time transition.
1694///
1695/// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1696impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1697 type Output = DateTime<Tz>;
1698
1699 fn sub(self, rhs: Months) -> Self::Output {
1700 self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1701 }
1702}
1703
1704impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1705 type Output = TimeDelta;
1706
1707 #[inline]
1708 fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1709 self.signed_duration_since(rhs)
1710 }
1711}
1712
1713impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1714 type Output = TimeDelta;
1715
1716 #[inline]
1717 fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1718 self.signed_duration_since(rhs)
1719 }
1720}
1721
1722/// Add `Days` to `NaiveDateTime`.
1723///
1724/// # Panics
1725///
1726/// Panics if:
1727/// - The resulting date would be out of range.
1728/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1729/// daylight saving time transition.
1730///
1731/// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead.
1732impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1733 type Output = DateTime<Tz>;
1734
1735 fn add(self, days: Days) -> Self::Output {
1736 self.checked_add_days(days).expect("`DateTime + Days` out of range")
1737 }
1738}
1739
1740/// Subtract `Days` from `DateTime`.
1741///
1742/// # Panics
1743///
1744/// Panics if:
1745/// - The resulting date would be out of range.
1746/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1747/// daylight saving time transition.
1748///
1749/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1750impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1751 type Output = DateTime<Tz>;
1752
1753 fn sub(self, days: Days) -> Self::Output {
1754 self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1755 }
1756}
1757
1758impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
1759 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1760 self.overflowing_naive_local().fmt(f)?;
1761 self.offset.fmt(f)
1762 }
1763}
1764
1765// `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1766// deriving a trait recursively does not propagate trait defined associated types with their own
1767// constraints:
1768// In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1769// cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1770// See below for further discussion:
1771// * https://github.com/rust-lang/rust/issues/26925
1772// * https://github.com/rkyv/rkyv/issues/333
1773// * https://github.com/dtolnay/syn/issues/370
1774#[cfg(feature = "rkyv-validation")]
1775impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1776where
1777 Tz: Archive,
1778 <Tz as Archive>::Archived: fmt::Debug,
1779 <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1780 <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1781{
1782 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1783 f.debug_struct("ArchivedDateTime")
1784 .field("datetime", &self.datetime)
1785 .field("offset", &self.offset)
1786 .finish()
1787 }
1788}
1789
1790impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1791where
1792 Tz::Offset: fmt::Display,
1793{
1794 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1795 self.overflowing_naive_local().fmt(f)?;
1796 f.write_char(' ')?;
1797 self.offset.fmt(f)
1798 }
1799}
1800
1801/// Accepts a relaxed form of RFC3339.
1802/// A space or a 'T' are accepted as the separator between the date and time
1803/// parts.
1804///
1805/// All of these examples are equivalent:
1806/// ```
1807/// # use chrono::{DateTime, Utc};
1808/// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1809/// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1810/// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1811/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1812/// # Ok::<(), chrono::ParseError>(())
1813/// ```
1814impl str::FromStr for DateTime<Utc> {
1815 type Err = ParseError;
1816
1817 fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1818 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1819 }
1820}
1821
1822/// Accepts a relaxed form of RFC3339.
1823/// A space or a 'T' are accepted as the separator between the date and time
1824/// parts.
1825///
1826/// All of these examples are equivalent:
1827/// ```
1828/// # use chrono::{DateTime, Local};
1829/// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1830/// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1831/// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1832/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1833/// # Ok::<(), chrono::ParseError>(())
1834/// ```
1835#[cfg(feature = "clock")]
1836impl str::FromStr for DateTime<Local> {
1837 type Err = ParseError;
1838
1839 fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1840 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1841 }
1842}
1843
1844#[cfg(feature = "std")]
1845impl From<SystemTime> for DateTime<Utc> {
1846 fn from(t: SystemTime) -> DateTime<Utc> {
1847 let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1848 Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1849 Err(e) => {
1850 // unlikely but should be handled
1851 let dur = e.duration();
1852 let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1853 if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) }
1854 }
1855 };
1856 Utc.timestamp_opt(sec, nsec).unwrap()
1857 }
1858}
1859
1860#[cfg(feature = "clock")]
1861impl From<SystemTime> for DateTime<Local> {
1862 fn from(t: SystemTime) -> DateTime<Local> {
1863 DateTime::<Utc>::from(t).with_timezone(&Local)
1864 }
1865}
1866
1867#[cfg(feature = "std")]
1868impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
1869 fn from(dt: DateTime<Tz>) -> SystemTime {
1870 let sec = dt.timestamp();
1871 let nsec = dt.timestamp_subsec_nanos();
1872 if sec < 0 {
1873 // unlikely but should be handled
1874 UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1875 } else {
1876 UNIX_EPOCH + Duration::new(sec as u64, nsec)
1877 }
1878 }
1879}
1880
1881#[cfg(all(
1882 target_arch = "wasm32",
1883 feature = "wasmbind",
1884 not(any(target_os = "emscripten", target_os = "wasi"))
1885))]
1886impl From<js_sys::Date> for DateTime<Utc> {
1887 fn from(date: js_sys::Date) -> DateTime<Utc> {
1888 DateTime::<Utc>::from(&date)
1889 }
1890}
1891
1892#[cfg(all(
1893 target_arch = "wasm32",
1894 feature = "wasmbind",
1895 not(any(target_os = "emscripten", target_os = "wasi"))
1896))]
1897impl From<&js_sys::Date> for DateTime<Utc> {
1898 fn from(date: &js_sys::Date) -> DateTime<Utc> {
1899 Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1900 }
1901}
1902
1903#[cfg(all(
1904 target_arch = "wasm32",
1905 feature = "wasmbind",
1906 not(any(target_os = "emscripten", target_os = "wasi"))
1907))]
1908impl From<DateTime<Utc>> for js_sys::Date {
1909 /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1910 /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1911 /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
1912 fn from(date: DateTime<Utc>) -> js_sys::Date {
1913 let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1914 js_sys::Date::new(&js_millis)
1915 }
1916}
1917
1918// Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1919// the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1920#[cfg(all(feature = "arbitrary", feature = "std"))]
1921impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1922where
1923 Tz: TimeZone,
1924 <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1925{
1926 fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1927 let datetime = NaiveDateTime::arbitrary(u)?;
1928 let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1929 Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1930 }
1931}
1932
1933/// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0.
1934/// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388
1935/// 1 day until January 1, 1601 1
1936/// 369 years until Januari 1, 1970 369 * 365 = 134685
1937/// of which floor(369 / 4) are leap years floor(369 / 4) = 92
1938/// except for 1700, 1800 and 1900 -3 +
1939/// --------
1940/// 719163
1941const UNIX_EPOCH_DAY: i64 = 719_163;