chrono/datetime/
mod.rs

1// This is a part of Chrono.
2// See README.md and LICENSE.txt for details.
3
4//! ISO 8601 date and time with time zone.
5
6#[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
7use alloc::string::String;
8use core::borrow::Borrow;
9use core::cmp::Ordering;
10use core::fmt::Write;
11use core::ops::{Add, AddAssign, Sub, SubAssign};
12use core::time::Duration;
13use core::{fmt, hash, str};
14#[cfg(feature = "std")]
15use std::time::{SystemTime, UNIX_EPOCH};
16
17#[allow(deprecated)]
18use crate::Date;
19#[cfg(all(feature = "unstable-locales", feature = "alloc"))]
20use crate::format::Locale;
21#[cfg(feature = "alloc")]
22use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339};
23use crate::format::{
24    Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse,
25    parse_and_remainder, parse_rfc3339,
26};
27use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
28#[cfg(feature = "clock")]
29use crate::offset::Local;
30use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc};
31use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
32use crate::{expect, try_opt};
33
34#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35use rkyv::{Archive, Deserialize, Serialize};
36
37/// documented at re-export site
38#[cfg(feature = "serde")]
39pub(super) mod serde;
40
41#[cfg(test)]
42mod tests;
43
44/// ISO 8601 combined date and time with time zone.
45///
46/// There are some constructors implemented here (the `from_*` methods), but
47/// the general-purpose constructors are all via the methods on the
48/// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
49#[derive(Clone)]
50#[cfg_attr(
51    any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
52    derive(Archive, Deserialize, Serialize),
53    archive(compare(PartialEq, PartialOrd))
54)]
55#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
56pub struct DateTime<Tz: TimeZone> {
57    datetime: NaiveDateTime,
58    offset: Tz::Offset,
59}
60
61/// The minimum possible `DateTime<Utc>`.
62#[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
63pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
64/// The maximum possible `DateTime<Utc>`.
65#[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
66pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
67
68impl<Tz: TimeZone> DateTime<Tz> {
69    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
70    ///
71    /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
72    /// passing it through FFI.
73    ///
74    /// For regular use you will probably want to use a method such as
75    /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
76    ///
77    /// # Example
78    ///
79    /// ```
80    /// # #[cfg(feature = "clock")] {
81    /// use chrono::{DateTime, Local};
82    ///
83    /// let dt = Local::now();
84    /// // Get components
85    /// let naive_utc = dt.naive_utc();
86    /// let offset = dt.offset().clone();
87    /// // Serialize, pass through FFI... and recreate the `DateTime`:
88    /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
89    /// assert_eq!(dt, dt_new);
90    /// # }
91    /// ```
92    #[inline]
93    #[must_use]
94    pub const fn from_naive_utc_and_offset(
95        datetime: NaiveDateTime,
96        offset: Tz::Offset,
97    ) -> DateTime<Tz> {
98        DateTime { datetime, offset }
99    }
100
101    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
102    #[inline]
103    #[must_use]
104    #[deprecated(
105        since = "0.4.27",
106        note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
107    )]
108    pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
109        DateTime { datetime, offset }
110    }
111
112    /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
113    ///
114    /// # Panics
115    ///
116    /// Panics if the local datetime can't be converted to UTC because it would be out of range.
117    ///
118    /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
119    /// and the offset from UTC pushes it beyond that.
120    #[inline]
121    #[must_use]
122    #[deprecated(
123        since = "0.4.27",
124        note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
125    )]
126    pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
127        let datetime_utc = datetime - offset.fix();
128
129        DateTime { datetime: datetime_utc, offset }
130    }
131
132    /// Retrieves the date component with an associated timezone.
133    ///
134    /// Unless you are immediately planning on turning this into a `DateTime`
135    /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
136    ///
137    /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
138    /// so should be preferred to [`Date`] any time you truly want to operate on dates.
139    ///
140    /// # Panics
141    ///
142    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
143    /// method will panic if the offset from UTC would push the local date outside of the
144    /// representable range of a [`Date`].
145    #[inline]
146    #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
147    #[allow(deprecated)]
148    #[must_use]
149    pub fn date(&self) -> Date<Tz> {
150        Date::from_utc(self.naive_local().date(), self.offset.clone())
151    }
152
153    /// Retrieves the date component.
154    ///
155    /// # Panics
156    ///
157    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
158    /// method will panic if the offset from UTC would push the local date outside of the
159    /// representable range of a [`NaiveDate`].
160    ///
161    /// # Example
162    ///
163    /// ```
164    /// use chrono::prelude::*;
165    ///
166    /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
167    /// let other: DateTime<FixedOffset> =
168    ///     FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169    /// assert_eq!(date.date_naive(), other.date_naive());
170    /// ```
171    #[inline]
172    #[must_use]
173    pub fn date_naive(&self) -> NaiveDate {
174        self.naive_local().date()
175    }
176
177    /// Retrieves the time component.
178    #[inline]
179    #[must_use]
180    pub fn time(&self) -> NaiveTime {
181        self.datetime.time() + self.offset.fix()
182    }
183
184    /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
185    /// (aka "UNIX timestamp").
186    ///
187    /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
188    /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
189    ///
190    /// ```
191    /// use chrono::{DateTime, TimeZone, Utc};
192    ///
193    /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
194    /// assert_eq!(dt.timestamp(), 1431648000);
195    ///
196    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
197    /// ```
198    #[inline]
199    #[must_use]
200    pub const fn timestamp(&self) -> i64 {
201        let gregorian_day = self.datetime.date().num_days_from_ce() as i64;
202        let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64;
203        (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
204    }
205
206    /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207    ///
208    /// # Example
209    ///
210    /// ```
211    /// use chrono::{NaiveDate, Utc};
212    ///
213    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
214    ///     .unwrap()
215    ///     .and_hms_milli_opt(0, 0, 1, 444)
216    ///     .unwrap()
217    ///     .and_local_timezone(Utc)
218    ///     .unwrap();
219    /// assert_eq!(dt.timestamp_millis(), 1_444);
220    ///
221    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
222    ///     .unwrap()
223    ///     .and_hms_milli_opt(1, 46, 40, 555)
224    ///     .unwrap()
225    ///     .and_local_timezone(Utc)
226    ///     .unwrap();
227    /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
228    /// ```
229    #[inline]
230    #[must_use]
231    pub const fn timestamp_millis(&self) -> i64 {
232        let as_ms = self.timestamp() * 1000;
233        as_ms + self.timestamp_subsec_millis() as i64
234    }
235
236    /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
237    ///
238    /// # Example
239    ///
240    /// ```
241    /// use chrono::{NaiveDate, Utc};
242    ///
243    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
244    ///     .unwrap()
245    ///     .and_hms_micro_opt(0, 0, 1, 444)
246    ///     .unwrap()
247    ///     .and_local_timezone(Utc)
248    ///     .unwrap();
249    /// assert_eq!(dt.timestamp_micros(), 1_000_444);
250    ///
251    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
252    ///     .unwrap()
253    ///     .and_hms_micro_opt(1, 46, 40, 555)
254    ///     .unwrap()
255    ///     .and_local_timezone(Utc)
256    ///     .unwrap();
257    /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
258    /// ```
259    #[inline]
260    #[must_use]
261    pub const fn timestamp_micros(&self) -> i64 {
262        let as_us = self.timestamp() * 1_000_000;
263        as_us + self.timestamp_subsec_micros() as i64
264    }
265
266    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
267    ///
268    /// # Panics
269    ///
270    /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
271    /// an out of range `DateTime`.
272    ///
273    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
274    /// and 2262-04-11T23:47:16.854775807.
275    #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
276    #[inline]
277    #[must_use]
278    pub const fn timestamp_nanos(&self) -> i64 {
279        expect(
280            self.timestamp_nanos_opt(),
281            "value can not be represented in a timestamp with nanosecond precision.",
282        )
283    }
284
285    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
286    ///
287    /// # Errors
288    ///
289    /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
290    /// `None` on an out of range `DateTime`.
291    ///
292    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
293    /// and 2262-04-11T23:47:16.854775807.
294    ///
295    /// # Example
296    ///
297    /// ```
298    /// use chrono::{NaiveDate, Utc};
299    ///
300    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
301    ///     .unwrap()
302    ///     .and_hms_nano_opt(0, 0, 1, 444)
303    ///     .unwrap()
304    ///     .and_local_timezone(Utc)
305    ///     .unwrap();
306    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
307    ///
308    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
309    ///     .unwrap()
310    ///     .and_hms_nano_opt(1, 46, 40, 555)
311    ///     .unwrap()
312    ///     .and_local_timezone(Utc)
313    ///     .unwrap();
314    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
315    ///
316    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
317    ///     .unwrap()
318    ///     .and_hms_nano_opt(0, 12, 43, 145_224_192)
319    ///     .unwrap()
320    ///     .and_local_timezone(Utc)
321    ///     .unwrap();
322    /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
323    ///
324    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
325    ///     .unwrap()
326    ///     .and_hms_nano_opt(23, 47, 16, 854_775_807)
327    ///     .unwrap()
328    ///     .and_local_timezone(Utc)
329    ///     .unwrap();
330    /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
331    ///
332    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
333    ///     .unwrap()
334    ///     .and_hms_nano_opt(0, 12, 43, 145_224_191)
335    ///     .unwrap()
336    ///     .and_local_timezone(Utc)
337    ///     .unwrap();
338    /// assert_eq!(dt.timestamp_nanos_opt(), None);
339    ///
340    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
341    ///     .unwrap()
342    ///     .and_hms_nano_opt(23, 47, 16, 854_775_808)
343    ///     .unwrap()
344    ///     .and_local_timezone(Utc)
345    ///     .unwrap();
346    /// assert_eq!(dt.timestamp_nanos_opt(), None);
347    /// ```
348    #[inline]
349    #[must_use]
350    pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
351        let mut timestamp = self.timestamp();
352        let mut subsec_nanos = self.timestamp_subsec_nanos() as i64;
353        // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while
354        // the final value can be represented as an `i64`.
355        // As workaround we converting the negative case to:
356        // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)``
357        //
358        // Also see <https://github.com/chronotope/chrono/issues/1289>.
359        if timestamp < 0 {
360            subsec_nanos -= 1_000_000_000;
361            timestamp += 1;
362        }
363        try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos)
364    }
365
366    /// Returns the number of milliseconds since the last second boundary.
367    ///
368    /// In event of a leap second this may exceed 999.
369    #[inline]
370    #[must_use]
371    pub const fn timestamp_subsec_millis(&self) -> u32 {
372        self.timestamp_subsec_nanos() / 1_000_000
373    }
374
375    /// Returns the number of microseconds since the last second boundary.
376    ///
377    /// In event of a leap second this may exceed 999,999.
378    #[inline]
379    #[must_use]
380    pub const fn timestamp_subsec_micros(&self) -> u32 {
381        self.timestamp_subsec_nanos() / 1_000
382    }
383
384    /// Returns the number of nanoseconds since the last second boundary
385    ///
386    /// In event of a leap second this may exceed 999,999,999.
387    #[inline]
388    #[must_use]
389    pub const fn timestamp_subsec_nanos(&self) -> u32 {
390        self.datetime.time().nanosecond()
391    }
392
393    /// Retrieves an associated offset from UTC.
394    #[inline]
395    #[must_use]
396    pub const fn offset(&self) -> &Tz::Offset {
397        &self.offset
398    }
399
400    /// Retrieves an associated time zone.
401    #[inline]
402    #[must_use]
403    pub fn timezone(&self) -> Tz {
404        TimeZone::from_offset(&self.offset)
405    }
406
407    /// Changes the associated time zone.
408    /// The returned `DateTime` references the same instant of time from the perspective of the
409    /// provided time zone.
410    #[inline]
411    #[must_use]
412    pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
413        tz.from_utc_datetime(&self.datetime)
414    }
415
416    /// Fix the offset from UTC to its current value, dropping the associated timezone information.
417    /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
418    #[inline]
419    #[must_use]
420    pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
421        self.with_timezone(&self.offset().fix())
422    }
423
424    /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
425    /// information.
426    #[inline]
427    #[must_use]
428    pub const fn to_utc(&self) -> DateTime<Utc> {
429        DateTime { datetime: self.datetime, offset: Utc }
430    }
431
432    /// Adds given `TimeDelta` to the current date and time.
433    ///
434    /// # Errors
435    ///
436    /// Returns `None` if the resulting date would be out of range.
437    #[inline]
438    #[must_use]
439    pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
440        let datetime = self.datetime.checked_add_signed(rhs)?;
441        let tz = self.timezone();
442        Some(tz.from_utc_datetime(&datetime))
443    }
444
445    /// Adds given `Months` to the current date and time.
446    ///
447    /// Uses the last day of the month if the day does not exist in the resulting month.
448    ///
449    /// See [`NaiveDate::checked_add_months`] for more details on behavior.
450    ///
451    /// # Errors
452    ///
453    /// Returns `None` if:
454    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455    ///   daylight saving time transition.
456    /// - The resulting UTC datetime would be out of range.
457    /// - The resulting local datetime would be out of range (unless `months` is zero).
458    #[must_use]
459    pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> {
460        // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate
461        // the resulting date, with which we can return `Some` even for an out of range local
462        // datetime.
463        self.overflowing_naive_local()
464            .checked_add_months(months)?
465            .and_local_timezone(Tz::from_offset(&self.offset))
466            .single()
467    }
468
469    /// Subtracts given `TimeDelta` from the current date and time.
470    ///
471    /// # Errors
472    ///
473    /// Returns `None` if the resulting date would be out of range.
474    #[inline]
475    #[must_use]
476    pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
477        let datetime = self.datetime.checked_sub_signed(rhs)?;
478        let tz = self.timezone();
479        Some(tz.from_utc_datetime(&datetime))
480    }
481
482    /// Subtracts given `Months` from the current date and time.
483    ///
484    /// Uses the last day of the month if the day does not exist in the resulting month.
485    ///
486    /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
487    ///
488    /// # Errors
489    ///
490    /// Returns `None` if:
491    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
492    ///   daylight saving time transition.
493    /// - The resulting UTC datetime would be out of range.
494    /// - The resulting local datetime would be out of range (unless `months` is zero).
495    #[must_use]
496    pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> {
497        // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate
498        // the resulting date, with which we can return `Some` even for an out of range local
499        // datetime.
500        self.overflowing_naive_local()
501            .checked_sub_months(months)?
502            .and_local_timezone(Tz::from_offset(&self.offset))
503            .single()
504    }
505
506    /// Add a duration in [`Days`] to the date part of the `DateTime`.
507    ///
508    /// # Errors
509    ///
510    /// Returns `None` if:
511    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
512    ///   daylight saving time transition.
513    /// - The resulting UTC datetime would be out of range.
514    /// - The resulting local datetime would be out of range (unless `days` is zero).
515    #[must_use]
516    pub fn checked_add_days(self, days: Days) -> Option<Self> {
517        if days == Days::new(0) {
518            return Some(self);
519        }
520        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
521        // does not validate the resulting date. This allows us to return `Some` even for an out of
522        // range local datetime when adding `Days(0)`.
523        self.overflowing_naive_local()
524            .checked_add_days(days)
525            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
526            .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC)
527    }
528
529    /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
530    ///
531    /// # Errors
532    ///
533    /// Returns `None` if:
534    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
535    ///   daylight saving time transition.
536    /// - The resulting UTC datetime would be out of range.
537    /// - The resulting local datetime would be out of range (unless `days` is zero).
538    #[must_use]
539    pub fn checked_sub_days(self, days: Days) -> Option<Self> {
540        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
541        // does not validate the resulting date. This allows us to return `Some` even for an out of
542        // range local datetime when adding `Days(0)`.
543        self.overflowing_naive_local()
544            .checked_sub_days(days)
545            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
546            .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC)
547    }
548
549    /// Subtracts another `DateTime` from the current date and time.
550    /// This does not overflow or underflow at all.
551    #[inline]
552    #[must_use]
553    pub fn signed_duration_since<Tz2: TimeZone>(
554        self,
555        rhs: impl Borrow<DateTime<Tz2>>,
556    ) -> TimeDelta {
557        self.datetime.signed_duration_since(rhs.borrow().datetime)
558    }
559
560    /// Returns a view to the naive UTC datetime.
561    #[inline]
562    #[must_use]
563    pub const fn naive_utc(&self) -> NaiveDateTime {
564        self.datetime
565    }
566
567    /// Returns a view to the naive local datetime.
568    ///
569    /// # Panics
570    ///
571    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
572    /// method will panic if the offset from UTC would push the local datetime outside of the
573    /// representable range of a [`NaiveDateTime`].
574    #[inline]
575    #[must_use]
576    pub fn naive_local(&self) -> NaiveDateTime {
577        self.datetime
578            .checked_add_offset(self.offset.fix())
579            .expect("Local time out of range for `NaiveDateTime`")
580    }
581
582    /// Returns the naive local datetime.
583    ///
584    /// This makes use of the buffer space outside of the representable range of values of
585    /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
586    /// outside chrono.
587    #[inline]
588    #[must_use]
589    pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
590        self.datetime.overflowing_add_offset(self.offset.fix())
591    }
592
593    /// Retrieve the elapsed years from now to the given [`DateTime`].
594    ///
595    /// # Errors
596    ///
597    /// Returns `None` if `base > self`.
598    #[must_use]
599    pub fn years_since(&self, base: Self) -> Option<u32> {
600        let mut years = self.year() - base.year();
601        let earlier_time =
602            (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
603
604        years -= match earlier_time {
605            true => 1,
606            false => 0,
607        };
608
609        match years >= 0 {
610            true => Some(years as u32),
611            false => None,
612        }
613    }
614
615    /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
616    ///
617    /// # Panics
618    ///
619    /// Panics if the date can not be represented in this format: the year may not be negative and
620    /// can not have more than 4 digits.
621    #[cfg(feature = "alloc")]
622    #[must_use]
623    pub fn to_rfc2822(&self) -> String {
624        let mut result = String::with_capacity(32);
625        write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
626            .expect("writing rfc2822 datetime to string should never fail");
627        result
628    }
629
630    /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
631    #[cfg(feature = "alloc")]
632    #[must_use]
633    pub fn to_rfc3339(&self) -> String {
634        // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
635        let mut result = String::with_capacity(32);
636        let naive = self.overflowing_naive_local();
637        let offset = self.offset.fix();
638        write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
639            .expect("writing rfc3339 datetime to string should never fail");
640        result
641    }
642
643    /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
644    /// formatted as per `SecondsFormat`.
645    ///
646    /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
647    /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
648    /// [`Fixed::TimezoneOffsetColon`]
649    ///
650    /// # Examples
651    ///
652    /// ```rust
653    /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate};
654    /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26)
655    ///     .unwrap()
656    ///     .and_hms_micro_opt(18, 30, 9, 453_829)
657    ///     .unwrap()
658    ///     .and_utc();
659    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00");
660    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z");
661    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z");
662    ///
663    /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
664    /// let dt = pst
665    ///     .from_local_datetime(
666    ///         &NaiveDate::from_ymd_opt(2018, 1, 26)
667    ///             .unwrap()
668    ///             .and_hms_micro_opt(10, 30, 9, 453_829)
669    ///             .unwrap(),
670    ///     )
671    ///     .unwrap();
672    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00");
673    /// ```
674    #[cfg(feature = "alloc")]
675    #[must_use]
676    pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
677        let mut result = String::with_capacity(38);
678        write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
679            .expect("writing rfc3339 datetime to string should never fail");
680        result
681    }
682
683    /// Set the time to a new fixed time on the existing date.
684    ///
685    /// # Errors
686    ///
687    /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a
688    /// `DateTime`, and `with_time` would push the value in UTC out of range.
689    ///
690    /// # Example
691    ///
692    /// ```
693    /// # #[cfg(feature = "clock")] {
694    /// use chrono::{Local, NaiveTime};
695    ///
696    /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap();
697    /// let today_noon = Local::now().with_time(noon);
698    /// let today_midnight = Local::now().with_time(NaiveTime::MIN);
699    ///
700    /// assert_eq!(today_noon.single().unwrap().time(), noon);
701    /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN);
702    /// # }
703    /// ```
704    #[must_use]
705    pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> {
706        self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time))
707    }
708
709    /// The minimum possible `DateTime<Utc>`.
710    pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
711    /// The maximum possible `DateTime<Utc>`.
712    pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
713}
714
715impl DateTime<Utc> {
716    /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
717    /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
718    /// and the number of nanoseconds since the last whole non-leap second.
719    ///
720    /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
721    /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
722    ///
723    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
724    /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
725    ///
726    /// The nanosecond part can exceed 1,000,000,000 in order to represent a
727    /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
728    /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
729    ///
730    /// # Errors
731    ///
732    /// Returns `None` on out-of-range number of seconds and/or
733    /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
734    ///
735    /// # Example
736    ///
737    /// ```
738    /// use chrono::DateTime;
739    ///
740    /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp");
741    ///
742    /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
743    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
744    /// ```
745    #[inline]
746    #[must_use]
747    pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
748        let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
749        let secs = secs.rem_euclid(86_400);
750        if days < i32::MIN as i64 || days > i32::MAX as i64 {
751            return None;
752        }
753        let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
754        let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
755        Some(date.and_time(time).and_utc())
756    }
757
758    /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds
759    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
760    ///
761    /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis).
762    ///
763    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
764    /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
765    ///
766    /// # Errors
767    ///
768    /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
769    ///
770    /// # Example
771    ///
772    /// ```
773    /// use chrono::DateTime;
774    ///
775    /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp");
776    ///
777    /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
778    /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
779    /// ```
780    #[inline]
781    #[must_use]
782    pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
783        let secs = millis.div_euclid(1000);
784        let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000;
785        Self::from_timestamp(secs, nsecs)
786    }
787
788    /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds
789    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
790    ///
791    /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros).
792    ///
793    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
794    /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`].
795    ///
796    /// # Errors
797    ///
798    /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime`
799    /// (more than ca. 262,000 years away from common era)
800    ///
801    /// # Example
802    ///
803    /// ```
804    /// use chrono::DateTime;
805    ///
806    /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC
807    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
808    /// assert!(dt.is_some());
809    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
810    ///
811    /// // Negative timestamps (before the UNIX epoch) are supported as well.
812    /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC
813    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
814    /// assert!(dt.is_some());
815    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
816    /// ```
817    #[inline]
818    #[must_use]
819    pub const fn from_timestamp_micros(micros: i64) -> Option<Self> {
820        let secs = micros.div_euclid(1_000_000);
821        let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000;
822        Self::from_timestamp(secs, nsecs)
823    }
824
825    /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds
826    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
827    ///
828    /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos).
829    ///
830    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
831    /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`].
832    ///
833    /// The UNIX epoch starts on midnight, January 1, 1970, UTC.
834    ///
835    /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can
836    /// be represented as a `DateTime` this method never fails.
837    ///
838    /// # Example
839    ///
840    /// ```
841    /// use chrono::DateTime;
842    ///
843    /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC
844    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
845    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
846    ///
847    /// // Negative timestamps (before the UNIX epoch) are supported as well.
848    /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC
849    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
850    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
851    /// ```
852    #[inline]
853    #[must_use]
854    pub const fn from_timestamp_nanos(nanos: i64) -> Self {
855        let secs = nanos.div_euclid(1_000_000_000);
856        let nsecs = nanos.rem_euclid(1_000_000_000) as u32;
857        expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range")
858    }
859
860    /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
861    pub const UNIX_EPOCH: Self =
862        expect(NaiveDate::from_ymd_opt(1970, 1, 1), "").and_time(NaiveTime::MIN).and_utc();
863}
864
865impl Default for DateTime<Utc> {
866    fn default() -> Self {
867        Utc.from_utc_datetime(&NaiveDateTime::default())
868    }
869}
870
871#[cfg(feature = "clock")]
872impl Default for DateTime<Local> {
873    fn default() -> Self {
874        Local.from_utc_datetime(&NaiveDateTime::default())
875    }
876}
877
878impl Default for DateTime<FixedOffset> {
879    fn default() -> Self {
880        FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
881    }
882}
883
884/// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
885impl From<DateTime<Utc>> for DateTime<FixedOffset> {
886    /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
887    ///
888    /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
889    /// this will be created with a fixed timezone offset of 0.
890    fn from(src: DateTime<Utc>) -> Self {
891        src.with_timezone(&FixedOffset::east_opt(0).unwrap())
892    }
893}
894
895/// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
896#[cfg(feature = "clock")]
897impl From<DateTime<Utc>> for DateTime<Local> {
898    /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
899    ///
900    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
901    fn from(src: DateTime<Utc>) -> Self {
902        src.with_timezone(&Local)
903    }
904}
905
906/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
907impl From<DateTime<FixedOffset>> for DateTime<Utc> {
908    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
909    ///
910    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
911    /// difference.
912    fn from(src: DateTime<FixedOffset>) -> Self {
913        src.with_timezone(&Utc)
914    }
915}
916
917/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
918#[cfg(feature = "clock")]
919impl From<DateTime<FixedOffset>> for DateTime<Local> {
920    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
921    ///
922    /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
923    /// time.
924    fn from(src: DateTime<FixedOffset>) -> Self {
925        src.with_timezone(&Local)
926    }
927}
928
929/// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
930#[cfg(feature = "clock")]
931impl From<DateTime<Local>> for DateTime<Utc> {
932    /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
933    ///
934    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
935    /// timezones.
936    fn from(src: DateTime<Local>) -> Self {
937        src.with_timezone(&Utc)
938    }
939}
940
941/// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
942#[cfg(feature = "clock")]
943impl From<DateTime<Local>> for DateTime<FixedOffset> {
944    /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
945    ///
946    /// Conversion is performed via [`DateTime::with_timezone`].
947    fn from(src: DateTime<Local>) -> Self {
948        src.with_timezone(&src.offset().fix())
949    }
950}
951
952/// Maps the local datetime to other datetime with given conversion function.
953fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
954where
955    F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
956{
957    f(dt.overflowing_naive_local())
958        .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
959        .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
960}
961
962impl DateTime<FixedOffset> {
963    /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
964    ///
965    /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
966    /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
967    ///
968    /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
969    /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
970    /// 2008.
971    ///
972    /// # Support for the obsolete date format
973    ///
974    /// - A 2-digit year is interpreted to be a year in 1950-2049.
975    /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
976    ///   [Appendix A.5]
977    /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
978    ///   They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
979    ///   the meaning is now ambiguous, the standard says they should be considered as `-0000`
980    ///   unless there is out-of-band information confirming their meaning.
981    ///   The exception is `Z`, which remains identical to `+0000`.
982    ///
983    /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
984    /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
985    ///
986    /// # Example
987    ///
988    /// ```
989    /// # use chrono::{DateTime, FixedOffset, TimeZone};
990    /// assert_eq!(
991    ///     DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
992    ///     FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
993    /// );
994    /// ```
995    pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
996        const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
997        let mut parsed = Parsed::new();
998        parse(&mut parsed, s, ITEMS.iter())?;
999        parsed.to_datetime()
1000    }
1001
1002    /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
1003    ///
1004    /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
1005    /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
1006    /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
1007    /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
1008    /// encountered variety of RFC 3339 formats.
1009    ///
1010    /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
1011    /// values in a wide range of formats, only some of which represent actual date-and-time
1012    /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
1013    /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
1014    /// values (or the other way around).
1015    pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1016        let mut parsed = Parsed::new();
1017        let (s, _) = parse_rfc3339(&mut parsed, s)?;
1018        if !s.is_empty() {
1019            return Err(TOO_LONG);
1020        }
1021        parsed.to_datetime()
1022    }
1023
1024    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
1025    ///
1026    /// Note that this method *requires a timezone* in the input string. See
1027    /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
1028    /// for a version that does not require a timezone in the to-be-parsed str. The returned
1029    /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
1030    ///
1031    /// See the [`format::strftime` module](crate::format::strftime) for supported format
1032    /// sequences.
1033    ///
1034    /// # Example
1035    ///
1036    /// ```rust
1037    /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone};
1038    ///
1039    /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
1040    /// assert_eq!(
1041    ///     dt,
1042    ///     Ok(FixedOffset::east_opt(0)
1043    ///         .unwrap()
1044    ///         .from_local_datetime(
1045    ///             &NaiveDate::from_ymd_opt(1983, 4, 13)
1046    ///                 .unwrap()
1047    ///                 .and_hms_milli_opt(12, 9, 14, 274)
1048    ///                 .unwrap()
1049    ///         )
1050    ///         .unwrap())
1051    /// );
1052    /// ```
1053    pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
1054        let mut parsed = Parsed::new();
1055        parse(&mut parsed, s, StrftimeItems::new(fmt))?;
1056        parsed.to_datetime()
1057    }
1058
1059    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
1060    /// slice with the remaining portion of the string.
1061    ///
1062    /// Note that this method *requires a timezone* in the input string. See
1063    /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
1064    /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
1065    /// reflecting the parsed timezone.
1066    ///
1067    /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
1068    /// sequences.
1069    ///
1070    /// Similar to [`parse_from_str`](#method.parse_from_str).
1071    ///
1072    /// # Example
1073    ///
1074    /// ```rust
1075    /// # use chrono::{DateTime, FixedOffset, TimeZone};
1076    /// let (datetime, remainder) = DateTime::parse_and_remainder(
1077    ///     "2015-02-18 23:16:09 +0200 trailing text",
1078    ///     "%Y-%m-%d %H:%M:%S %z",
1079    /// )
1080    /// .unwrap();
1081    /// assert_eq!(
1082    ///     datetime,
1083    ///     FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1084    /// );
1085    /// assert_eq!(remainder, " trailing text");
1086    /// ```
1087    pub fn parse_and_remainder<'a>(
1088        s: &'a str,
1089        fmt: &str,
1090    ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
1091        let mut parsed = Parsed::new();
1092        let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
1093        parsed.to_datetime().map(|d| (d, remainder))
1094    }
1095}
1096
1097impl<Tz: TimeZone> DateTime<Tz>
1098where
1099    Tz::Offset: fmt::Display,
1100{
1101    /// Formats the combined date and time with the specified formatting items.
1102    #[cfg(feature = "alloc")]
1103    #[inline]
1104    #[must_use]
1105    pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
1106    where
1107        I: Iterator<Item = B> + Clone,
1108        B: Borrow<Item<'a>>,
1109    {
1110        let local = self.overflowing_naive_local();
1111        DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
1112    }
1113
1114    /// Formats the combined date and time per the specified format string.
1115    ///
1116    /// See the [`crate::format::strftime`] module for the supported escape sequences.
1117    ///
1118    /// # Example
1119    /// ```rust
1120    /// use chrono::prelude::*;
1121    ///
1122    /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
1123    /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
1124    /// assert_eq!(formatted, "02/04/2017 12:50");
1125    /// ```
1126    #[cfg(feature = "alloc")]
1127    #[inline]
1128    #[must_use]
1129    pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
1130        self.format_with_items(StrftimeItems::new(fmt))
1131    }
1132
1133    /// Formats the combined date and time with the specified formatting items and locale.
1134    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1135    #[inline]
1136    #[must_use]
1137    pub fn format_localized_with_items<'a, I, B>(
1138        &self,
1139        items: I,
1140        locale: Locale,
1141    ) -> DelayedFormat<I>
1142    where
1143        I: Iterator<Item = B> + Clone,
1144        B: Borrow<Item<'a>>,
1145    {
1146        let local = self.overflowing_naive_local();
1147        DelayedFormat::new_with_offset_and_locale(
1148            Some(local.date()),
1149            Some(local.time()),
1150            &self.offset,
1151            items,
1152            locale,
1153        )
1154    }
1155
1156    /// Formats the combined date and time per the specified format string and
1157    /// locale.
1158    ///
1159    /// See the [`crate::format::strftime`] module on the supported escape
1160    /// sequences.
1161    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1162    #[inline]
1163    #[must_use]
1164    pub fn format_localized<'a>(
1165        &self,
1166        fmt: &'a str,
1167        locale: Locale,
1168    ) -> DelayedFormat<StrftimeItems<'a>> {
1169        self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
1170    }
1171}
1172
1173impl<Tz: TimeZone> Datelike for DateTime<Tz> {
1174    #[inline]
1175    fn year(&self) -> i32 {
1176        self.overflowing_naive_local().year()
1177    }
1178    #[inline]
1179    fn month(&self) -> u32 {
1180        self.overflowing_naive_local().month()
1181    }
1182    #[inline]
1183    fn month0(&self) -> u32 {
1184        self.overflowing_naive_local().month0()
1185    }
1186    #[inline]
1187    fn day(&self) -> u32 {
1188        self.overflowing_naive_local().day()
1189    }
1190    #[inline]
1191    fn day0(&self) -> u32 {
1192        self.overflowing_naive_local().day0()
1193    }
1194    #[inline]
1195    fn ordinal(&self) -> u32 {
1196        self.overflowing_naive_local().ordinal()
1197    }
1198    #[inline]
1199    fn ordinal0(&self) -> u32 {
1200        self.overflowing_naive_local().ordinal0()
1201    }
1202    #[inline]
1203    fn weekday(&self) -> Weekday {
1204        self.overflowing_naive_local().weekday()
1205    }
1206    #[inline]
1207    fn iso_week(&self) -> IsoWeek {
1208        self.overflowing_naive_local().iso_week()
1209    }
1210
1211    #[inline]
1212    /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1213    ///
1214    /// See also the [`NaiveDate::with_year`] method.
1215    ///
1216    /// # Errors
1217    ///
1218    /// Returns `None` if:
1219    /// - The resulting date does not exist (February 29 in a non-leap year).
1220    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1221    ///   daylight saving time transition.
1222    /// - The resulting UTC datetime would be out of range.
1223    /// - The resulting local datetime would be out of range (unless the year remains the same).
1224    fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1225        map_local(self, |dt| match dt.year() == year {
1226            true => Some(dt),
1227            false => dt.with_year(year),
1228        })
1229    }
1230
1231    /// Makes a new `DateTime` with the month number (starting from 1) changed.
1232    ///
1233    /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist.
1234    ///
1235    /// See also the [`NaiveDate::with_month`] method.
1236    ///
1237    /// # Errors
1238    ///
1239    /// Returns `None` if:
1240    /// - The resulting date does not exist (for example `month(4)` when day of the month is 31).
1241    /// - The value for `month` is invalid.
1242    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1243    ///   daylight saving time transition.
1244    #[inline]
1245    fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1246        map_local(self, |datetime| datetime.with_month(month))
1247    }
1248
1249    /// Makes a new `DateTime` with the month number (starting from 0) changed.
1250    ///
1251    /// See also the [`NaiveDate::with_month0`] method.
1252    ///
1253    /// # Errors
1254    ///
1255    /// Returns `None` if:
1256    /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31).
1257    /// - The value for `month0` is invalid.
1258    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1259    ///   daylight saving time transition.
1260    #[inline]
1261    fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1262        map_local(self, |datetime| datetime.with_month0(month0))
1263    }
1264
1265    /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1266    ///
1267    /// See also the [`NaiveDate::with_day`] method.
1268    ///
1269    /// # Errors
1270    ///
1271    /// Returns `None` if:
1272    /// - The resulting date does not exist (for example `day(31)` in April).
1273    /// - The value for `day` is invalid.
1274    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1275    ///   daylight saving time transition.
1276    #[inline]
1277    fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1278        map_local(self, |datetime| datetime.with_day(day))
1279    }
1280
1281    /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1282    ///
1283    /// See also the [`NaiveDate::with_day0`] method.
1284    ///
1285    /// # Errors
1286    ///
1287    /// Returns `None` if:
1288    /// - The resulting date does not exist (for example `day(30)` in April).
1289    /// - The value for `day0` is invalid.
1290    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1291    ///   daylight saving time transition.
1292    #[inline]
1293    fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1294        map_local(self, |datetime| datetime.with_day0(day0))
1295    }
1296
1297    /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1298    ///
1299    /// See also the [`NaiveDate::with_ordinal`] method.
1300    ///
1301    /// # Errors
1302    ///
1303    /// Returns `None` if:
1304    /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year).
1305    /// - The value for `ordinal` is invalid.
1306    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1307    ///   daylight saving time transition.
1308    #[inline]
1309    fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1310        map_local(self, |datetime| datetime.with_ordinal(ordinal))
1311    }
1312
1313    /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1314    ///
1315    /// See also the [`NaiveDate::with_ordinal0`] method.
1316    ///
1317    /// # Errors
1318    ///
1319    /// Returns `None` if:
1320    /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year).
1321    /// - The value for `ordinal0` is invalid.
1322    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1323    ///   daylight saving time transition.
1324    #[inline]
1325    fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1326        map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1327    }
1328}
1329
1330impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1331    #[inline]
1332    fn hour(&self) -> u32 {
1333        self.overflowing_naive_local().hour()
1334    }
1335    #[inline]
1336    fn minute(&self) -> u32 {
1337        self.overflowing_naive_local().minute()
1338    }
1339    #[inline]
1340    fn second(&self) -> u32 {
1341        self.overflowing_naive_local().second()
1342    }
1343    #[inline]
1344    fn nanosecond(&self) -> u32 {
1345        self.overflowing_naive_local().nanosecond()
1346    }
1347
1348    /// Makes a new `DateTime` with the hour number changed.
1349    ///
1350    /// See also the [`NaiveTime::with_hour`] method.
1351    ///
1352    /// # Errors
1353    ///
1354    /// Returns `None` if:
1355    /// - The value for `hour` is invalid.
1356    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1357    ///   daylight saving time transition.
1358    #[inline]
1359    fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1360        map_local(self, |datetime| datetime.with_hour(hour))
1361    }
1362
1363    /// Makes a new `DateTime` with the minute number changed.
1364    ///
1365    /// See also the [`NaiveTime::with_minute`] method.
1366    ///
1367    /// # Errors
1368    ///
1369    /// - The value for `minute` is invalid.
1370    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1371    ///   daylight saving time transition.
1372    #[inline]
1373    fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1374        map_local(self, |datetime| datetime.with_minute(min))
1375    }
1376
1377    /// Makes a new `DateTime` with the second number changed.
1378    ///
1379    /// As with the [`second`](#method.second) method,
1380    /// the input range is restricted to 0 through 59.
1381    ///
1382    /// See also the [`NaiveTime::with_second`] method.
1383    ///
1384    /// # Errors
1385    ///
1386    /// Returns `None` if:
1387    /// - The value for `second` is invalid.
1388    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1389    ///   daylight saving time transition.
1390    #[inline]
1391    fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1392        map_local(self, |datetime| datetime.with_second(sec))
1393    }
1394
1395    /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1396    ///
1397    /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1398    /// As with the [`NaiveDateTime::nanosecond`] method,
1399    /// the input range can exceed 1,000,000,000 for leap seconds.
1400    ///
1401    /// See also the [`NaiveTime::with_nanosecond`] method.
1402    ///
1403    /// # Errors
1404    ///
1405    /// Returns `None` if `nanosecond >= 2,000,000,000`.
1406    #[inline]
1407    fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1408        map_local(self, |datetime| datetime.with_nanosecond(nano))
1409    }
1410}
1411
1412// We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can
1413// be `Copy`. Implement it manually if the two types we do have are `Copy`.
1414impl<Tz: TimeZone> Copy for DateTime<Tz>
1415where
1416    <Tz as TimeZone>::Offset: Copy,
1417    NaiveDateTime: Copy,
1418{
1419}
1420
1421impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
1422    fn eq(&self, other: &DateTime<Tz2>) -> bool {
1423        self.datetime == other.datetime
1424    }
1425}
1426
1427impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1428
1429impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1430    /// Compare two DateTimes based on their true time, ignoring time zones
1431    ///
1432    /// # Example
1433    ///
1434    /// ```
1435    /// use chrono::prelude::*;
1436    ///
1437    /// let earlier = Utc
1438    ///     .with_ymd_and_hms(2015, 5, 15, 2, 0, 0)
1439    ///     .unwrap()
1440    ///     .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1441    /// let later = Utc
1442    ///     .with_ymd_and_hms(2015, 5, 15, 3, 0, 0)
1443    ///     .unwrap()
1444    ///     .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1445    ///
1446    /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1447    /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1448    ///
1449    /// assert!(later > earlier);
1450    /// ```
1451    fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1452        self.datetime.partial_cmp(&other.datetime)
1453    }
1454}
1455
1456impl<Tz: TimeZone> Ord for DateTime<Tz> {
1457    fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1458        self.datetime.cmp(&other.datetime)
1459    }
1460}
1461
1462impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
1463    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1464        self.datetime.hash(state)
1465    }
1466}
1467
1468/// Add `TimeDelta` to `DateTime`.
1469///
1470/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1471/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1472/// the assumption becomes that **there is exactly a single leap second ever**.
1473///
1474/// # Panics
1475///
1476/// Panics if the resulting date would be out of range.
1477/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1478impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1479    type Output = DateTime<Tz>;
1480
1481    #[inline]
1482    fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1483        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1484    }
1485}
1486
1487/// Add `std::time::Duration` to `DateTime`.
1488///
1489/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1490/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1491/// the assumption becomes that **there is exactly a single leap second ever**.
1492///
1493/// # Panics
1494///
1495/// Panics if the resulting date would be out of range.
1496/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1497impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1498    type Output = DateTime<Tz>;
1499
1500    #[inline]
1501    fn add(self, rhs: Duration) -> DateTime<Tz> {
1502        let rhs = TimeDelta::from_std(rhs)
1503            .expect("overflow converting from core::time::Duration to TimeDelta");
1504        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1505    }
1506}
1507
1508/// Add-assign `chrono::Duration` to `DateTime`.
1509///
1510/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1511/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1512/// the assumption becomes that **there is exactly a single leap second ever**.
1513///
1514/// # Panics
1515///
1516/// Panics if the resulting date would be out of range.
1517/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1518impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1519    #[inline]
1520    fn add_assign(&mut self, rhs: TimeDelta) {
1521        let datetime =
1522            self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1523        let tz = self.timezone();
1524        *self = tz.from_utc_datetime(&datetime);
1525    }
1526}
1527
1528/// Add-assign `std::time::Duration` to `DateTime`.
1529///
1530/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1531/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1532/// the assumption becomes that **there is exactly a single leap second ever**.
1533///
1534/// # Panics
1535///
1536/// Panics if the resulting date would be out of range.
1537/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1538impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1539    #[inline]
1540    fn add_assign(&mut self, rhs: Duration) {
1541        let rhs = TimeDelta::from_std(rhs)
1542            .expect("overflow converting from core::time::Duration to TimeDelta");
1543        *self += rhs;
1544    }
1545}
1546
1547/// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1548///
1549/// # Panics
1550///
1551/// Panics if the resulting date would be out of range.
1552impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1553    type Output = DateTime<Tz>;
1554
1555    #[inline]
1556    fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1557        self.datetime =
1558            self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1559        self
1560    }
1561}
1562
1563/// Add `Months` to `DateTime`.
1564///
1565/// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1566/// details.
1567///
1568/// # Panics
1569///
1570/// Panics if:
1571/// - The resulting date would be out of range.
1572/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1573///   daylight saving time transition.
1574///
1575/// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1576impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1577    type Output = DateTime<Tz>;
1578
1579    fn add(self, rhs: Months) -> Self::Output {
1580        self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1581    }
1582}
1583
1584/// Subtract `TimeDelta` from `DateTime`.
1585///
1586/// This is the same as the addition with a negated `TimeDelta`.
1587///
1588/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1589/// second ever**, except when the `DateTime` itself represents a leap second in which case
1590/// the assumption becomes that **there is exactly a single leap second ever**.
1591///
1592/// # Panics
1593///
1594/// Panics if the resulting date would be out of range.
1595/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1596impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1597    type Output = DateTime<Tz>;
1598
1599    #[inline]
1600    fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1601        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1602    }
1603}
1604
1605/// Subtract `std::time::Duration` from `DateTime`.
1606///
1607/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1608/// second ever**, except when the `DateTime` itself represents a leap second in which case
1609/// the assumption becomes that **there is exactly a single leap second ever**.
1610///
1611/// # Panics
1612///
1613/// Panics if the resulting date would be out of range.
1614/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1615impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1616    type Output = DateTime<Tz>;
1617
1618    #[inline]
1619    fn sub(self, rhs: Duration) -> DateTime<Tz> {
1620        let rhs = TimeDelta::from_std(rhs)
1621            .expect("overflow converting from core::time::Duration to TimeDelta");
1622        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1623    }
1624}
1625
1626/// Subtract-assign `TimeDelta` from `DateTime`.
1627///
1628/// This is the same as the addition with a negated `TimeDelta`.
1629///
1630/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1631/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1632/// the assumption becomes that **there is exactly a single leap second ever**.
1633///
1634/// # Panics
1635///
1636/// Panics if the resulting date would be out of range.
1637/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1638impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1639    #[inline]
1640    fn sub_assign(&mut self, rhs: TimeDelta) {
1641        let datetime =
1642            self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1643        let tz = self.timezone();
1644        *self = tz.from_utc_datetime(&datetime)
1645    }
1646}
1647
1648/// Subtract-assign `std::time::Duration` from `DateTime`.
1649///
1650/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1651/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1652/// the assumption becomes that **there is exactly a single leap second ever**.
1653///
1654/// # Panics
1655///
1656/// Panics if the resulting date would be out of range.
1657/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1658impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1659    #[inline]
1660    fn sub_assign(&mut self, rhs: Duration) {
1661        let rhs = TimeDelta::from_std(rhs)
1662            .expect("overflow converting from core::time::Duration to TimeDelta");
1663        *self -= rhs;
1664    }
1665}
1666
1667/// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1668///
1669/// # Panics
1670///
1671/// Panics if the resulting date would be out of range.
1672impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1673    type Output = DateTime<Tz>;
1674
1675    #[inline]
1676    fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1677        self.datetime =
1678            self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1679        self
1680    }
1681}
1682
1683/// Subtract `Months` from `DateTime`.
1684///
1685/// The result will be clamped to valid days in the resulting month, see
1686/// [`DateTime<Tz>::checked_sub_months`] for details.
1687///
1688/// # Panics
1689///
1690/// Panics if:
1691/// - The resulting date would be out of range.
1692/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1693///   daylight saving time transition.
1694///
1695/// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1696impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1697    type Output = DateTime<Tz>;
1698
1699    fn sub(self, rhs: Months) -> Self::Output {
1700        self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1701    }
1702}
1703
1704impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1705    type Output = TimeDelta;
1706
1707    #[inline]
1708    fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1709        self.signed_duration_since(rhs)
1710    }
1711}
1712
1713impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1714    type Output = TimeDelta;
1715
1716    #[inline]
1717    fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1718        self.signed_duration_since(rhs)
1719    }
1720}
1721
1722/// Add `Days` to `NaiveDateTime`.
1723///
1724/// # Panics
1725///
1726/// Panics if:
1727/// - The resulting date would be out of range.
1728/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1729///   daylight saving time transition.
1730///
1731/// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead.
1732impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1733    type Output = DateTime<Tz>;
1734
1735    fn add(self, days: Days) -> Self::Output {
1736        self.checked_add_days(days).expect("`DateTime + Days` out of range")
1737    }
1738}
1739
1740/// Subtract `Days` from `DateTime`.
1741///
1742/// # Panics
1743///
1744/// Panics if:
1745/// - The resulting date would be out of range.
1746/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1747///   daylight saving time transition.
1748///
1749/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1750impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1751    type Output = DateTime<Tz>;
1752
1753    fn sub(self, days: Days) -> Self::Output {
1754        self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1755    }
1756}
1757
1758impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
1759    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1760        self.overflowing_naive_local().fmt(f)?;
1761        self.offset.fmt(f)
1762    }
1763}
1764
1765// `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1766// deriving a trait recursively does not propagate trait defined associated types with their own
1767// constraints:
1768// In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1769// cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1770// See below for further discussion:
1771// * https://github.com/rust-lang/rust/issues/26925
1772// * https://github.com/rkyv/rkyv/issues/333
1773// * https://github.com/dtolnay/syn/issues/370
1774#[cfg(feature = "rkyv-validation")]
1775impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1776where
1777    Tz: Archive,
1778    <Tz as Archive>::Archived: fmt::Debug,
1779    <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1780    <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1781{
1782    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1783        f.debug_struct("ArchivedDateTime")
1784            .field("datetime", &self.datetime)
1785            .field("offset", &self.offset)
1786            .finish()
1787    }
1788}
1789
1790impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1791where
1792    Tz::Offset: fmt::Display,
1793{
1794    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1795        self.overflowing_naive_local().fmt(f)?;
1796        f.write_char(' ')?;
1797        self.offset.fmt(f)
1798    }
1799}
1800
1801/// Accepts a relaxed form of RFC3339.
1802/// A space or a 'T' are accepted as the separator between the date and time
1803/// parts.
1804///
1805/// All of these examples are equivalent:
1806/// ```
1807/// # use chrono::{DateTime, Utc};
1808/// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1809/// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1810/// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1811/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1812/// # Ok::<(), chrono::ParseError>(())
1813/// ```
1814impl str::FromStr for DateTime<Utc> {
1815    type Err = ParseError;
1816
1817    fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1818        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1819    }
1820}
1821
1822/// Accepts a relaxed form of RFC3339.
1823/// A space or a 'T' are accepted as the separator between the date and time
1824/// parts.
1825///
1826/// All of these examples are equivalent:
1827/// ```
1828/// # use chrono::{DateTime, Local};
1829/// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1830/// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1831/// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1832/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1833/// # Ok::<(), chrono::ParseError>(())
1834/// ```
1835#[cfg(feature = "clock")]
1836impl str::FromStr for DateTime<Local> {
1837    type Err = ParseError;
1838
1839    fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1840        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1841    }
1842}
1843
1844#[cfg(feature = "std")]
1845impl From<SystemTime> for DateTime<Utc> {
1846    fn from(t: SystemTime) -> DateTime<Utc> {
1847        let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1848            Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1849            Err(e) => {
1850                // unlikely but should be handled
1851                let dur = e.duration();
1852                let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1853                if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) }
1854            }
1855        };
1856        Utc.timestamp_opt(sec, nsec).unwrap()
1857    }
1858}
1859
1860#[cfg(feature = "clock")]
1861impl From<SystemTime> for DateTime<Local> {
1862    fn from(t: SystemTime) -> DateTime<Local> {
1863        DateTime::<Utc>::from(t).with_timezone(&Local)
1864    }
1865}
1866
1867#[cfg(feature = "std")]
1868impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
1869    fn from(dt: DateTime<Tz>) -> SystemTime {
1870        let sec = dt.timestamp();
1871        let nsec = dt.timestamp_subsec_nanos();
1872        if sec < 0 {
1873            // unlikely but should be handled
1874            UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1875        } else {
1876            UNIX_EPOCH + Duration::new(sec as u64, nsec)
1877        }
1878    }
1879}
1880
1881#[cfg(all(
1882    target_arch = "wasm32",
1883    feature = "wasmbind",
1884    not(any(target_os = "emscripten", target_os = "wasi"))
1885))]
1886impl From<js_sys::Date> for DateTime<Utc> {
1887    fn from(date: js_sys::Date) -> DateTime<Utc> {
1888        DateTime::<Utc>::from(&date)
1889    }
1890}
1891
1892#[cfg(all(
1893    target_arch = "wasm32",
1894    feature = "wasmbind",
1895    not(any(target_os = "emscripten", target_os = "wasi"))
1896))]
1897impl From<&js_sys::Date> for DateTime<Utc> {
1898    fn from(date: &js_sys::Date) -> DateTime<Utc> {
1899        Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1900    }
1901}
1902
1903#[cfg(all(
1904    target_arch = "wasm32",
1905    feature = "wasmbind",
1906    not(any(target_os = "emscripten", target_os = "wasi"))
1907))]
1908impl From<DateTime<Utc>> for js_sys::Date {
1909    /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1910    /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1911    /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
1912    fn from(date: DateTime<Utc>) -> js_sys::Date {
1913        let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1914        js_sys::Date::new(&js_millis)
1915    }
1916}
1917
1918// Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1919// the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1920#[cfg(all(feature = "arbitrary", feature = "std"))]
1921impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1922where
1923    Tz: TimeZone,
1924    <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1925{
1926    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1927        let datetime = NaiveDateTime::arbitrary(u)?;
1928        let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1929        Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1930    }
1931}
1932
1933/// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0.
1934/// 4 full leap year cycles until December 31, 1600     4 * 146097 = 584388
1935/// 1 day until January 1, 1601                                           1
1936/// 369 years until Januari 1, 1970                      369 * 365 = 134685
1937/// of which floor(369 / 4) are leap years          floor(369 / 4) =     92
1938/// except for 1700, 1800 and 1900                                       -3 +
1939///                                                                  --------
1940///                                                                  719163
1941const UNIX_EPOCH_DAY: i64 = 719_163;