quinn/connection.rs
1use std::{
2 any::Any,
3 fmt,
4 future::Future,
5 io,
6 net::{IpAddr, SocketAddr},
7 pin::Pin,
8 sync::Arc,
9 task::{Context, Poll, Waker, ready},
10};
11
12use bytes::Bytes;
13use pin_project_lite::pin_project;
14use rustc_hash::FxHashMap;
15use thiserror::Error;
16use tokio::sync::{Notify, futures::Notified, mpsc, oneshot};
17use tracing::{Instrument, Span, debug_span};
18
19use crate::{
20 ConnectionEvent, Duration, Instant, VarInt,
21 mutex::Mutex,
22 recv_stream::RecvStream,
23 runtime::{AsyncTimer, AsyncUdpSocket, Runtime, UdpPoller},
24 send_stream::SendStream,
25 udp_transmit,
26};
27use proto::{
28 ConnectionError, ConnectionHandle, ConnectionStats, Dir, EndpointEvent, StreamEvent, StreamId,
29 congestion::Controller,
30};
31
32/// In-progress connection attempt future
33#[derive(Debug)]
34pub struct Connecting {
35 conn: Option<ConnectionRef>,
36 connected: oneshot::Receiver<bool>,
37 handshake_data_ready: Option<oneshot::Receiver<()>>,
38}
39
40impl Connecting {
41 pub(crate) fn new(
42 handle: ConnectionHandle,
43 conn: proto::Connection,
44 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
45 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
46 socket: Arc<dyn AsyncUdpSocket>,
47 runtime: Arc<dyn Runtime>,
48 ) -> Self {
49 let (on_handshake_data_send, on_handshake_data_recv) = oneshot::channel();
50 let (on_connected_send, on_connected_recv) = oneshot::channel();
51 let conn = ConnectionRef::new(
52 handle,
53 conn,
54 endpoint_events,
55 conn_events,
56 on_handshake_data_send,
57 on_connected_send,
58 socket,
59 runtime.clone(),
60 );
61
62 let driver = ConnectionDriver(conn.clone());
63 runtime.spawn(Box::pin(
64 async {
65 if let Err(e) = driver.await {
66 tracing::error!("I/O error: {e}");
67 }
68 }
69 .instrument(Span::current()),
70 ));
71
72 Self {
73 conn: Some(conn),
74 connected: on_connected_recv,
75 handshake_data_ready: Some(on_handshake_data_recv),
76 }
77 }
78
79 /// Convert into a 0-RTT or 0.5-RTT connection at the cost of weakened security
80 ///
81 /// Returns `Ok` immediately if the local endpoint is able to attempt sending 0/0.5-RTT data.
82 /// If so, the returned [`Connection`] can be used to send application data without waiting for
83 /// the rest of the handshake to complete, at the cost of weakened cryptographic security
84 /// guarantees. The returned [`ZeroRttAccepted`] future resolves when the handshake does
85 /// complete, at which point subsequently opened streams and written data will have full
86 /// cryptographic protection.
87 ///
88 /// ## Outgoing
89 ///
90 /// For outgoing connections, the initial attempt to convert to a [`Connection`] which sends
91 /// 0-RTT data will proceed if the [`crypto::ClientConfig`][crate::crypto::ClientConfig]
92 /// attempts to resume a previous TLS session. However, **the remote endpoint may not actually
93 /// _accept_ the 0-RTT data**--yet still accept the connection attempt in general. This
94 /// possibility is conveyed through the [`ZeroRttAccepted`] future--when the handshake
95 /// completes, it resolves to true if the 0-RTT data was accepted and false if it was rejected.
96 /// If it was rejected, the existence of streams opened and other application data sent prior
97 /// to the handshake completing will not be conveyed to the remote application, and local
98 /// operations on them will return `ZeroRttRejected` errors.
99 ///
100 /// A server may reject 0-RTT data at its discretion, but accepting 0-RTT data requires the
101 /// relevant resumption state to be stored in the server, which servers may limit or lose for
102 /// various reasons including not persisting resumption state across server restarts.
103 ///
104 /// If manually providing a [`crypto::ClientConfig`][crate::crypto::ClientConfig], check your
105 /// implementation's docs for 0-RTT pitfalls.
106 ///
107 /// ## Incoming
108 ///
109 /// For incoming connections, conversion to 0.5-RTT will always fully succeed. `into_0rtt` will
110 /// always return `Ok` and the [`ZeroRttAccepted`] will always resolve to true.
111 ///
112 /// If manually providing a [`crypto::ServerConfig`][crate::crypto::ServerConfig], check your
113 /// implementation's docs for 0-RTT pitfalls.
114 ///
115 /// ## Security
116 ///
117 /// On outgoing connections, this enables transmission of 0-RTT data, which is vulnerable to
118 /// replay attacks, and should therefore never invoke non-idempotent operations.
119 ///
120 /// On incoming connections, this enables transmission of 0.5-RTT data, which may be sent
121 /// before TLS client authentication has occurred, and should therefore not be used to send
122 /// data for which client authentication is being used.
123 pub fn into_0rtt(mut self) -> Result<(Connection, ZeroRttAccepted), Self> {
124 // This lock borrows `self` and would normally be dropped at the end of this scope, so we'll
125 // have to release it explicitly before returning `self` by value.
126 let conn = (self.conn.as_mut().unwrap()).state.lock("into_0rtt");
127
128 let is_ok = conn.inner.has_0rtt() || conn.inner.side().is_server();
129 drop(conn);
130
131 if is_ok {
132 let conn = self.conn.take().unwrap();
133 Ok((Connection(conn), ZeroRttAccepted(self.connected)))
134 } else {
135 Err(self)
136 }
137 }
138
139 /// Parameters negotiated during the handshake
140 ///
141 /// The dynamic type returned is determined by the configured
142 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
143 /// be [`downcast`](Box::downcast) to a
144 /// [`crypto::rustls::HandshakeData`](crate::crypto::rustls::HandshakeData).
145 pub async fn handshake_data(&mut self) -> Result<Box<dyn Any>, ConnectionError> {
146 // Taking &mut self allows us to use a single oneshot channel rather than dealing with
147 // potentially many tasks waiting on the same event. It's a bit of a hack, but keeps things
148 // simple.
149 if let Some(x) = self.handshake_data_ready.take() {
150 let _ = x.await;
151 }
152 let conn = self.conn.as_ref().unwrap();
153 let inner = conn.state.lock("handshake");
154 inner
155 .inner
156 .crypto_session()
157 .handshake_data()
158 .ok_or_else(|| {
159 inner
160 .error
161 .clone()
162 .expect("spurious handshake data ready notification")
163 })
164 }
165
166 /// The local IP address which was used when the peer established
167 /// the connection
168 ///
169 /// This can be different from the address the endpoint is bound to, in case
170 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
171 ///
172 /// This will return `None` for clients, or when the platform does not expose this
173 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
174 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
175 ///
176 /// Will panic if called after `poll` has returned `Ready`.
177 pub fn local_ip(&self) -> Option<IpAddr> {
178 let conn = self.conn.as_ref().unwrap();
179 let inner = conn.state.lock("local_ip");
180
181 inner.inner.local_ip()
182 }
183
184 /// The peer's UDP address
185 ///
186 /// Will panic if called after `poll` has returned `Ready`.
187 pub fn remote_address(&self) -> SocketAddr {
188 let conn_ref: &ConnectionRef = self.conn.as_ref().expect("used after yielding Ready");
189 conn_ref.state.lock("remote_address").inner.remote_address()
190 }
191}
192
193impl Future for Connecting {
194 type Output = Result<Connection, ConnectionError>;
195 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
196 Pin::new(&mut self.connected).poll(cx).map(|_| {
197 let conn = self.conn.take().unwrap();
198 let inner = conn.state.lock("connecting");
199 if inner.connected {
200 drop(inner);
201 Ok(Connection(conn))
202 } else {
203 Err(inner
204 .error
205 .clone()
206 .expect("connected signaled without connection success or error"))
207 }
208 })
209 }
210}
211
212/// Future that completes when a connection is fully established
213///
214/// For clients, the resulting value indicates if 0-RTT was accepted. For servers, the resulting
215/// value is meaningless.
216pub struct ZeroRttAccepted(oneshot::Receiver<bool>);
217
218impl Future for ZeroRttAccepted {
219 type Output = bool;
220 fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
221 Pin::new(&mut self.0).poll(cx).map(|x| x.unwrap_or(false))
222 }
223}
224
225/// A future that drives protocol logic for a connection
226///
227/// This future handles the protocol logic for a single connection, routing events from the
228/// `Connection` API object to the `Endpoint` task and the related stream-related interfaces.
229/// It also keeps track of outstanding timeouts for the `Connection`.
230///
231/// If the connection encounters an error condition, this future will yield an error. It will
232/// terminate (yielding `Ok(())`) if the connection was closed without error. Unlike other
233/// connection-related futures, this waits for the draining period to complete to ensure that
234/// packets still in flight from the peer are handled gracefully.
235#[must_use = "connection drivers must be spawned for their connections to function"]
236#[derive(Debug)]
237struct ConnectionDriver(ConnectionRef);
238
239impl Future for ConnectionDriver {
240 type Output = Result<(), io::Error>;
241
242 fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
243 let conn = &mut *self.0.state.lock("poll");
244
245 let span = debug_span!("drive", id = conn.handle.0);
246 let _guard = span.enter();
247
248 if let Err(e) = conn.process_conn_events(&self.0.shared, cx) {
249 conn.terminate(e, &self.0.shared);
250 return Poll::Ready(Ok(()));
251 }
252 let mut keep_going = conn.drive_transmit(cx)?;
253 // If a timer expires, there might be more to transmit. When we transmit something, we
254 // might need to reset a timer. Hence, we must loop until neither happens.
255 keep_going |= conn.drive_timer(cx);
256 conn.forward_endpoint_events();
257 conn.forward_app_events(&self.0.shared);
258
259 if !conn.inner.is_drained() {
260 if keep_going {
261 // If the connection hasn't processed all tasks, schedule it again
262 cx.waker().wake_by_ref();
263 } else {
264 conn.driver = Some(cx.waker().clone());
265 }
266 return Poll::Pending;
267 }
268 if conn.error.is_none() {
269 unreachable!("drained connections always have an error");
270 }
271 Poll::Ready(Ok(()))
272 }
273}
274
275/// A QUIC connection.
276///
277/// If all references to a connection (including every clone of the `Connection` handle, streams of
278/// incoming streams, and the various stream types) have been dropped, then the connection will be
279/// automatically closed with an `error_code` of 0 and an empty `reason`. You can also close the
280/// connection explicitly by calling [`Connection::close()`].
281///
282/// Closing the connection immediately abandons efforts to deliver data to the peer. Upon
283/// receiving CONNECTION_CLOSE the peer *may* drop any stream data not yet delivered to the
284/// application. [`Connection::close()`] describes in more detail how to gracefully close a
285/// connection without losing application data.
286///
287/// May be cloned to obtain another handle to the same connection.
288///
289/// [`Connection::close()`]: Connection::close
290#[derive(Debug, Clone)]
291pub struct Connection(ConnectionRef);
292
293impl Connection {
294 /// Initiate a new outgoing unidirectional stream.
295 ///
296 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
297 /// consequence, the peer won't be notified that a stream has been opened until the stream is
298 /// actually used.
299 pub fn open_uni(&self) -> OpenUni<'_> {
300 OpenUni {
301 conn: &self.0,
302 notify: self.0.shared.stream_budget_available[Dir::Uni as usize].notified(),
303 }
304 }
305
306 /// Initiate a new outgoing bidirectional stream.
307 ///
308 /// Streams are cheap and instantaneous to open unless blocked by flow control. As a
309 /// consequence, the peer won't be notified that a stream has been opened until the stream is
310 /// actually used. Calling [`open_bi()`] then waiting on the [`RecvStream`] without writing
311 /// anything to [`SendStream`] will never succeed.
312 ///
313 /// [`open_bi()`]: crate::Connection::open_bi
314 /// [`SendStream`]: crate::SendStream
315 /// [`RecvStream`]: crate::RecvStream
316 pub fn open_bi(&self) -> OpenBi<'_> {
317 OpenBi {
318 conn: &self.0,
319 notify: self.0.shared.stream_budget_available[Dir::Bi as usize].notified(),
320 }
321 }
322
323 /// Accept the next incoming uni-directional stream
324 pub fn accept_uni(&self) -> AcceptUni<'_> {
325 AcceptUni {
326 conn: &self.0,
327 notify: self.0.shared.stream_incoming[Dir::Uni as usize].notified(),
328 }
329 }
330
331 /// Accept the next incoming bidirectional stream
332 ///
333 /// **Important Note**: The `Connection` that calls [`open_bi()`] must write to its [`SendStream`]
334 /// before the other `Connection` is able to `accept_bi()`. Calling [`open_bi()`] then
335 /// waiting on the [`RecvStream`] without writing anything to [`SendStream`] will never succeed.
336 ///
337 /// [`accept_bi()`]: crate::Connection::accept_bi
338 /// [`open_bi()`]: crate::Connection::open_bi
339 /// [`SendStream`]: crate::SendStream
340 /// [`RecvStream`]: crate::RecvStream
341 pub fn accept_bi(&self) -> AcceptBi<'_> {
342 AcceptBi {
343 conn: &self.0,
344 notify: self.0.shared.stream_incoming[Dir::Bi as usize].notified(),
345 }
346 }
347
348 /// Receive an application datagram
349 pub fn read_datagram(&self) -> ReadDatagram<'_> {
350 ReadDatagram {
351 conn: &self.0,
352 notify: self.0.shared.datagram_received.notified(),
353 }
354 }
355
356 /// Wait for the connection to be closed for any reason
357 ///
358 /// Despite the return type's name, closed connections are often not an error condition at the
359 /// application layer. Cases that might be routine include [`ConnectionError::LocallyClosed`]
360 /// and [`ConnectionError::ApplicationClosed`].
361 pub async fn closed(&self) -> ConnectionError {
362 {
363 let conn = self.0.state.lock("closed");
364 if let Some(error) = conn.error.as_ref() {
365 return error.clone();
366 }
367 // Construct the future while the lock is held to ensure we can't miss a wakeup if
368 // the `Notify` is signaled immediately after we release the lock. `await` it after
369 // the lock guard is out of scope.
370 self.0.shared.closed.notified()
371 }
372 .await;
373 self.0
374 .state
375 .lock("closed")
376 .error
377 .as_ref()
378 .expect("closed without an error")
379 .clone()
380 }
381
382 /// If the connection is closed, the reason why.
383 ///
384 /// Returns `None` if the connection is still open.
385 pub fn close_reason(&self) -> Option<ConnectionError> {
386 self.0.state.lock("close_reason").error.clone()
387 }
388
389 /// Close the connection immediately.
390 ///
391 /// Pending operations will fail immediately with [`ConnectionError::LocallyClosed`]. No
392 /// more data is sent to the peer and the peer may drop buffered data upon receiving
393 /// the CONNECTION_CLOSE frame.
394 ///
395 /// `error_code` and `reason` are not interpreted, and are provided directly to the peer.
396 ///
397 /// `reason` will be truncated to fit in a single packet with overhead; to improve odds that it
398 /// is preserved in full, it should be kept under 1KiB.
399 ///
400 /// # Gracefully closing a connection
401 ///
402 /// Only the peer last receiving application data can be certain that all data is
403 /// delivered. The only reliable action it can then take is to close the connection,
404 /// potentially with a custom error code. The delivery of the final CONNECTION_CLOSE
405 /// frame is very likely if both endpoints stay online long enough, and
406 /// [`Endpoint::wait_idle()`] can be used to provide sufficient time. Otherwise, the
407 /// remote peer will time out the connection, provided that the idle timeout is not
408 /// disabled.
409 ///
410 /// The sending side can not guarantee all stream data is delivered to the remote
411 /// application. It only knows the data is delivered to the QUIC stack of the remote
412 /// endpoint. Once the local side sends a CONNECTION_CLOSE frame in response to calling
413 /// [`close()`] the remote endpoint may drop any data it received but is as yet
414 /// undelivered to the application, including data that was acknowledged as received to
415 /// the local endpoint.
416 ///
417 /// [`ConnectionError::LocallyClosed`]: crate::ConnectionError::LocallyClosed
418 /// [`Endpoint::wait_idle()`]: crate::Endpoint::wait_idle
419 /// [`close()`]: Connection::close
420 pub fn close(&self, error_code: VarInt, reason: &[u8]) {
421 let conn = &mut *self.0.state.lock("close");
422 conn.close(error_code, Bytes::copy_from_slice(reason), &self.0.shared);
423 }
424
425 /// Transmit `data` as an unreliable, unordered application datagram
426 ///
427 /// Application datagrams are a low-level primitive. They may be lost or delivered out of order,
428 /// and `data` must both fit inside a single QUIC packet and be smaller than the maximum
429 /// dictated by the peer.
430 pub fn send_datagram(&self, data: Bytes) -> Result<(), SendDatagramError> {
431 let conn = &mut *self.0.state.lock("send_datagram");
432 if let Some(ref x) = conn.error {
433 return Err(SendDatagramError::ConnectionLost(x.clone()));
434 }
435 use proto::SendDatagramError::*;
436 match conn.inner.datagrams().send(data, true) {
437 Ok(()) => {
438 conn.wake();
439 Ok(())
440 }
441 Err(e) => Err(match e {
442 Blocked(..) => unreachable!(),
443 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
444 Disabled => SendDatagramError::Disabled,
445 TooLarge => SendDatagramError::TooLarge,
446 }),
447 }
448 }
449
450 /// Transmit `data` as an unreliable, unordered application datagram
451 ///
452 /// Unlike [`send_datagram()`], this method will wait for buffer space during congestion
453 /// conditions, which effectively prioritizes old datagrams over new datagrams.
454 ///
455 /// See [`send_datagram()`] for details.
456 ///
457 /// [`send_datagram()`]: Connection::send_datagram
458 pub fn send_datagram_wait(&self, data: Bytes) -> SendDatagram<'_> {
459 SendDatagram {
460 conn: &self.0,
461 data: Some(data),
462 notify: self.0.shared.datagrams_unblocked.notified(),
463 }
464 }
465
466 /// Compute the maximum size of datagrams that may be passed to [`send_datagram()`].
467 ///
468 /// Returns `None` if datagrams are unsupported by the peer or disabled locally.
469 ///
470 /// This may change over the lifetime of a connection according to variation in the path MTU
471 /// estimate. The peer can also enforce an arbitrarily small fixed limit, but if the peer's
472 /// limit is large this is guaranteed to be a little over a kilobyte at minimum.
473 ///
474 /// Not necessarily the maximum size of received datagrams.
475 ///
476 /// [`send_datagram()`]: Connection::send_datagram
477 pub fn max_datagram_size(&self) -> Option<usize> {
478 self.0
479 .state
480 .lock("max_datagram_size")
481 .inner
482 .datagrams()
483 .max_size()
484 }
485
486 /// Bytes available in the outgoing datagram buffer
487 ///
488 /// When greater than zero, calling [`send_datagram()`](Self::send_datagram) with a datagram of
489 /// at most this size is guaranteed not to cause older datagrams to be dropped.
490 pub fn datagram_send_buffer_space(&self) -> usize {
491 self.0
492 .state
493 .lock("datagram_send_buffer_space")
494 .inner
495 .datagrams()
496 .send_buffer_space()
497 }
498
499 /// The peer's UDP address
500 ///
501 /// If `ServerConfig::migration` is `true`, clients may change addresses at will, e.g. when
502 /// switching to a cellular internet connection.
503 pub fn remote_address(&self) -> SocketAddr {
504 self.0.state.lock("remote_address").inner.remote_address()
505 }
506
507 /// The local IP address which was used when the peer established
508 /// the connection
509 ///
510 /// This can be different from the address the endpoint is bound to, in case
511 /// the endpoint is bound to a wildcard address like `0.0.0.0` or `::`.
512 ///
513 /// This will return `None` for clients, or when the platform does not expose this
514 /// information. See [`quinn_udp::RecvMeta::dst_ip`](udp::RecvMeta::dst_ip) for a list of
515 /// supported platforms when using [`quinn_udp`](udp) for I/O, which is the default.
516 pub fn local_ip(&self) -> Option<IpAddr> {
517 self.0.state.lock("local_ip").inner.local_ip()
518 }
519
520 /// Current best estimate of this connection's latency (round-trip-time)
521 pub fn rtt(&self) -> Duration {
522 self.0.state.lock("rtt").inner.rtt()
523 }
524
525 /// Returns connection statistics
526 pub fn stats(&self) -> ConnectionStats {
527 self.0.state.lock("stats").inner.stats()
528 }
529
530 /// Current state of the congestion control algorithm, for debugging purposes
531 pub fn congestion_state(&self) -> Box<dyn Controller> {
532 self.0
533 .state
534 .lock("congestion_state")
535 .inner
536 .congestion_state()
537 .clone_box()
538 }
539
540 /// Parameters negotiated during the handshake
541 ///
542 /// Guaranteed to return `Some` on fully established connections or after
543 /// [`Connecting::handshake_data()`] succeeds. See that method's documentations for details on
544 /// the returned value.
545 ///
546 /// [`Connection::handshake_data()`]: crate::Connecting::handshake_data
547 pub fn handshake_data(&self) -> Option<Box<dyn Any>> {
548 self.0
549 .state
550 .lock("handshake_data")
551 .inner
552 .crypto_session()
553 .handshake_data()
554 }
555
556 /// Cryptographic identity of the peer
557 ///
558 /// The dynamic type returned is determined by the configured
559 /// [`Session`](proto::crypto::Session). For the default `rustls` session, the return value can
560 /// be [`downcast`](Box::downcast) to a <code>Vec<[rustls::pki_types::CertificateDer]></code>
561 pub fn peer_identity(&self) -> Option<Box<dyn Any>> {
562 self.0
563 .state
564 .lock("peer_identity")
565 .inner
566 .crypto_session()
567 .peer_identity()
568 }
569
570 /// A stable identifier for this connection
571 ///
572 /// Peer addresses and connection IDs can change, but this value will remain
573 /// fixed for the lifetime of the connection.
574 pub fn stable_id(&self) -> usize {
575 self.0.stable_id()
576 }
577
578 /// Update traffic keys spontaneously
579 ///
580 /// This primarily exists for testing purposes.
581 pub fn force_key_update(&self) {
582 self.0
583 .state
584 .lock("force_key_update")
585 .inner
586 .force_key_update()
587 }
588
589 /// Derive keying material from this connection's TLS session secrets.
590 ///
591 /// When both peers call this method with the same `label` and `context`
592 /// arguments and `output` buffers of equal length, they will get the
593 /// same sequence of bytes in `output`. These bytes are cryptographically
594 /// strong and pseudorandom, and are suitable for use as keying material.
595 ///
596 /// See [RFC5705](https://tools.ietf.org/html/rfc5705) for more information.
597 pub fn export_keying_material(
598 &self,
599 output: &mut [u8],
600 label: &[u8],
601 context: &[u8],
602 ) -> Result<(), proto::crypto::ExportKeyingMaterialError> {
603 self.0
604 .state
605 .lock("export_keying_material")
606 .inner
607 .crypto_session()
608 .export_keying_material(output, label, context)
609 }
610
611 /// Modify the number of remotely initiated unidirectional streams that may be concurrently open
612 ///
613 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
614 /// `count`s increase both minimum and worst-case memory consumption.
615 pub fn set_max_concurrent_uni_streams(&self, count: VarInt) {
616 let mut conn = self.0.state.lock("set_max_concurrent_uni_streams");
617 conn.inner.set_max_concurrent_streams(Dir::Uni, count);
618 // May need to send MAX_STREAMS to make progress
619 conn.wake();
620 }
621
622 /// See [`proto::TransportConfig::receive_window()`]
623 pub fn set_receive_window(&self, receive_window: VarInt) {
624 let mut conn = self.0.state.lock("set_receive_window");
625 conn.inner.set_receive_window(receive_window);
626 conn.wake();
627 }
628
629 /// Modify the number of remotely initiated bidirectional streams that may be concurrently open
630 ///
631 /// No streams may be opened by the peer unless fewer than `count` are already open. Large
632 /// `count`s increase both minimum and worst-case memory consumption.
633 pub fn set_max_concurrent_bi_streams(&self, count: VarInt) {
634 let mut conn = self.0.state.lock("set_max_concurrent_bi_streams");
635 conn.inner.set_max_concurrent_streams(Dir::Bi, count);
636 // May need to send MAX_STREAMS to make progress
637 conn.wake();
638 }
639}
640
641pin_project! {
642 /// Future produced by [`Connection::open_uni`]
643 pub struct OpenUni<'a> {
644 conn: &'a ConnectionRef,
645 #[pin]
646 notify: Notified<'a>,
647 }
648}
649
650impl Future for OpenUni<'_> {
651 type Output = Result<SendStream, ConnectionError>;
652 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
653 let this = self.project();
654 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Uni))?;
655 Poll::Ready(Ok(SendStream::new(conn, id, is_0rtt)))
656 }
657}
658
659pin_project! {
660 /// Future produced by [`Connection::open_bi`]
661 pub struct OpenBi<'a> {
662 conn: &'a ConnectionRef,
663 #[pin]
664 notify: Notified<'a>,
665 }
666}
667
668impl Future for OpenBi<'_> {
669 type Output = Result<(SendStream, RecvStream), ConnectionError>;
670 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
671 let this = self.project();
672 let (conn, id, is_0rtt) = ready!(poll_open(ctx, this.conn, this.notify, Dir::Bi))?;
673
674 Poll::Ready(Ok((
675 SendStream::new(conn.clone(), id, is_0rtt),
676 RecvStream::new(conn, id, is_0rtt),
677 )))
678 }
679}
680
681fn poll_open<'a>(
682 ctx: &mut Context<'_>,
683 conn: &'a ConnectionRef,
684 mut notify: Pin<&mut Notified<'a>>,
685 dir: Dir,
686) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
687 let mut state = conn.state.lock("poll_open");
688 if let Some(ref e) = state.error {
689 return Poll::Ready(Err(e.clone()));
690 } else if let Some(id) = state.inner.streams().open(dir) {
691 let is_0rtt = state.inner.side().is_client() && state.inner.is_handshaking();
692 drop(state); // Release the lock so clone can take it
693 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
694 }
695 loop {
696 match notify.as_mut().poll(ctx) {
697 // `state` lock ensures we didn't race with readiness
698 Poll::Pending => return Poll::Pending,
699 // Spurious wakeup, get a new future
700 Poll::Ready(()) => {
701 notify.set(conn.shared.stream_budget_available[dir as usize].notified())
702 }
703 }
704 }
705}
706
707pin_project! {
708 /// Future produced by [`Connection::accept_uni`]
709 pub struct AcceptUni<'a> {
710 conn: &'a ConnectionRef,
711 #[pin]
712 notify: Notified<'a>,
713 }
714}
715
716impl Future for AcceptUni<'_> {
717 type Output = Result<RecvStream, ConnectionError>;
718
719 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
720 let this = self.project();
721 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Uni))?;
722 Poll::Ready(Ok(RecvStream::new(conn, id, is_0rtt)))
723 }
724}
725
726pin_project! {
727 /// Future produced by [`Connection::accept_bi`]
728 pub struct AcceptBi<'a> {
729 conn: &'a ConnectionRef,
730 #[pin]
731 notify: Notified<'a>,
732 }
733}
734
735impl Future for AcceptBi<'_> {
736 type Output = Result<(SendStream, RecvStream), ConnectionError>;
737
738 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
739 let this = self.project();
740 let (conn, id, is_0rtt) = ready!(poll_accept(ctx, this.conn, this.notify, Dir::Bi))?;
741 Poll::Ready(Ok((
742 SendStream::new(conn.clone(), id, is_0rtt),
743 RecvStream::new(conn, id, is_0rtt),
744 )))
745 }
746}
747
748fn poll_accept<'a>(
749 ctx: &mut Context<'_>,
750 conn: &'a ConnectionRef,
751 mut notify: Pin<&mut Notified<'a>>,
752 dir: Dir,
753) -> Poll<Result<(ConnectionRef, StreamId, bool), ConnectionError>> {
754 let mut state = conn.state.lock("poll_accept");
755 // Check for incoming streams before checking `state.error` so that already-received streams,
756 // which are necessarily finite, can be drained from a closed connection.
757 if let Some(id) = state.inner.streams().accept(dir) {
758 let is_0rtt = state.inner.is_handshaking();
759 state.wake(); // To send additional stream ID credit
760 drop(state); // Release the lock so clone can take it
761 return Poll::Ready(Ok((conn.clone(), id, is_0rtt)));
762 } else if let Some(ref e) = state.error {
763 return Poll::Ready(Err(e.clone()));
764 }
765 loop {
766 match notify.as_mut().poll(ctx) {
767 // `state` lock ensures we didn't race with readiness
768 Poll::Pending => return Poll::Pending,
769 // Spurious wakeup, get a new future
770 Poll::Ready(()) => notify.set(conn.shared.stream_incoming[dir as usize].notified()),
771 }
772 }
773}
774
775pin_project! {
776 /// Future produced by [`Connection::read_datagram`]
777 pub struct ReadDatagram<'a> {
778 conn: &'a ConnectionRef,
779 #[pin]
780 notify: Notified<'a>,
781 }
782}
783
784impl Future for ReadDatagram<'_> {
785 type Output = Result<Bytes, ConnectionError>;
786 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
787 let mut this = self.project();
788 let mut state = this.conn.state.lock("ReadDatagram::poll");
789 // Check for buffered datagrams before checking `state.error` so that already-received
790 // datagrams, which are necessarily finite, can be drained from a closed connection.
791 if let Some(x) = state.inner.datagrams().recv() {
792 return Poll::Ready(Ok(x));
793 } else if let Some(ref e) = state.error {
794 return Poll::Ready(Err(e.clone()));
795 }
796 loop {
797 match this.notify.as_mut().poll(ctx) {
798 // `state` lock ensures we didn't race with readiness
799 Poll::Pending => return Poll::Pending,
800 // Spurious wakeup, get a new future
801 Poll::Ready(()) => this
802 .notify
803 .set(this.conn.shared.datagram_received.notified()),
804 }
805 }
806 }
807}
808
809pin_project! {
810 /// Future produced by [`Connection::send_datagram_wait`]
811 pub struct SendDatagram<'a> {
812 conn: &'a ConnectionRef,
813 data: Option<Bytes>,
814 #[pin]
815 notify: Notified<'a>,
816 }
817}
818
819impl Future for SendDatagram<'_> {
820 type Output = Result<(), SendDatagramError>;
821 fn poll(self: Pin<&mut Self>, ctx: &mut Context<'_>) -> Poll<Self::Output> {
822 let mut this = self.project();
823 let mut state = this.conn.state.lock("SendDatagram::poll");
824 if let Some(ref e) = state.error {
825 return Poll::Ready(Err(SendDatagramError::ConnectionLost(e.clone())));
826 }
827 use proto::SendDatagramError::*;
828 match state
829 .inner
830 .datagrams()
831 .send(this.data.take().unwrap(), false)
832 {
833 Ok(()) => {
834 state.wake();
835 Poll::Ready(Ok(()))
836 }
837 Err(e) => Poll::Ready(Err(match e {
838 Blocked(data) => {
839 this.data.replace(data);
840 loop {
841 match this.notify.as_mut().poll(ctx) {
842 Poll::Pending => return Poll::Pending,
843 // Spurious wakeup, get a new future
844 Poll::Ready(()) => this
845 .notify
846 .set(this.conn.shared.datagrams_unblocked.notified()),
847 }
848 }
849 }
850 UnsupportedByPeer => SendDatagramError::UnsupportedByPeer,
851 Disabled => SendDatagramError::Disabled,
852 TooLarge => SendDatagramError::TooLarge,
853 })),
854 }
855 }
856}
857
858#[derive(Debug)]
859pub(crate) struct ConnectionRef(Arc<ConnectionInner>);
860
861impl ConnectionRef {
862 #[allow(clippy::too_many_arguments)]
863 fn new(
864 handle: ConnectionHandle,
865 conn: proto::Connection,
866 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
867 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
868 on_handshake_data: oneshot::Sender<()>,
869 on_connected: oneshot::Sender<bool>,
870 socket: Arc<dyn AsyncUdpSocket>,
871 runtime: Arc<dyn Runtime>,
872 ) -> Self {
873 Self(Arc::new(ConnectionInner {
874 state: Mutex::new(State {
875 inner: conn,
876 driver: None,
877 handle,
878 on_handshake_data: Some(on_handshake_data),
879 on_connected: Some(on_connected),
880 connected: false,
881 timer: None,
882 timer_deadline: None,
883 conn_events,
884 endpoint_events,
885 blocked_writers: FxHashMap::default(),
886 blocked_readers: FxHashMap::default(),
887 stopped: FxHashMap::default(),
888 error: None,
889 ref_count: 0,
890 io_poller: socket.clone().create_io_poller(),
891 socket,
892 runtime,
893 send_buffer: Vec::new(),
894 buffered_transmit: None,
895 }),
896 shared: Shared::default(),
897 }))
898 }
899
900 fn stable_id(&self) -> usize {
901 &*self.0 as *const _ as usize
902 }
903}
904
905impl Clone for ConnectionRef {
906 fn clone(&self) -> Self {
907 self.state.lock("clone").ref_count += 1;
908 Self(self.0.clone())
909 }
910}
911
912impl Drop for ConnectionRef {
913 fn drop(&mut self) {
914 let conn = &mut *self.state.lock("drop");
915 if let Some(x) = conn.ref_count.checked_sub(1) {
916 conn.ref_count = x;
917 if x == 0 && !conn.inner.is_closed() {
918 // If the driver is alive, it's just it and us, so we'd better shut it down. If it's
919 // not, we can't do any harm. If there were any streams being opened, then either
920 // the connection will be closed for an unrelated reason or a fresh reference will
921 // be constructed for the newly opened stream.
922 conn.implicit_close(&self.shared);
923 }
924 }
925 }
926}
927
928impl std::ops::Deref for ConnectionRef {
929 type Target = ConnectionInner;
930 fn deref(&self) -> &Self::Target {
931 &self.0
932 }
933}
934
935#[derive(Debug)]
936pub(crate) struct ConnectionInner {
937 pub(crate) state: Mutex<State>,
938 pub(crate) shared: Shared,
939}
940
941#[derive(Debug, Default)]
942pub(crate) struct Shared {
943 /// Notified when new streams may be locally initiated due to an increase in stream ID flow
944 /// control budget
945 stream_budget_available: [Notify; 2],
946 /// Notified when the peer has initiated a new stream
947 stream_incoming: [Notify; 2],
948 datagram_received: Notify,
949 datagrams_unblocked: Notify,
950 closed: Notify,
951}
952
953pub(crate) struct State {
954 pub(crate) inner: proto::Connection,
955 driver: Option<Waker>,
956 handle: ConnectionHandle,
957 on_handshake_data: Option<oneshot::Sender<()>>,
958 on_connected: Option<oneshot::Sender<bool>>,
959 connected: bool,
960 timer: Option<Pin<Box<dyn AsyncTimer>>>,
961 timer_deadline: Option<Instant>,
962 conn_events: mpsc::UnboundedReceiver<ConnectionEvent>,
963 endpoint_events: mpsc::UnboundedSender<(ConnectionHandle, EndpointEvent)>,
964 pub(crate) blocked_writers: FxHashMap<StreamId, Waker>,
965 pub(crate) blocked_readers: FxHashMap<StreamId, Waker>,
966 pub(crate) stopped: FxHashMap<StreamId, Waker>,
967 /// Always set to Some before the connection becomes drained
968 pub(crate) error: Option<ConnectionError>,
969 /// Number of live handles that can be used to initiate or handle I/O; excludes the driver
970 ref_count: usize,
971 socket: Arc<dyn AsyncUdpSocket>,
972 io_poller: Pin<Box<dyn UdpPoller>>,
973 runtime: Arc<dyn Runtime>,
974 send_buffer: Vec<u8>,
975 /// We buffer a transmit when the underlying I/O would block
976 buffered_transmit: Option<proto::Transmit>,
977}
978
979impl State {
980 fn drive_transmit(&mut self, cx: &mut Context) -> io::Result<bool> {
981 let now = self.runtime.now();
982 let mut transmits = 0;
983
984 let max_datagrams = self
985 .socket
986 .max_transmit_segments()
987 .min(MAX_TRANSMIT_SEGMENTS);
988
989 loop {
990 // Retry the last transmit, or get a new one.
991 let t = match self.buffered_transmit.take() {
992 Some(t) => t,
993 None => {
994 self.send_buffer.clear();
995 self.send_buffer.reserve(self.inner.current_mtu() as usize);
996 match self
997 .inner
998 .poll_transmit(now, max_datagrams, &mut self.send_buffer)
999 {
1000 Some(t) => {
1001 transmits += match t.segment_size {
1002 None => 1,
1003 Some(s) => (t.size + s - 1) / s, // round up
1004 };
1005 t
1006 }
1007 None => break,
1008 }
1009 }
1010 };
1011
1012 if self.io_poller.as_mut().poll_writable(cx)?.is_pending() {
1013 // Retry after a future wakeup
1014 self.buffered_transmit = Some(t);
1015 return Ok(false);
1016 }
1017
1018 let len = t.size;
1019 let retry = match self
1020 .socket
1021 .try_send(&udp_transmit(&t, &self.send_buffer[..len]))
1022 {
1023 Ok(()) => false,
1024 Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => true,
1025 Err(e) => return Err(e),
1026 };
1027 if retry {
1028 // We thought the socket was writable, but it wasn't. Retry so that either another
1029 // `poll_writable` call determines that the socket is indeed not writable and
1030 // registers us for a wakeup, or the send succeeds if this really was just a
1031 // transient failure.
1032 self.buffered_transmit = Some(t);
1033 continue;
1034 }
1035
1036 if transmits >= MAX_TRANSMIT_DATAGRAMS {
1037 // TODO: What isn't ideal here yet is that if we don't poll all
1038 // datagrams that could be sent we don't go into the `app_limited`
1039 // state and CWND continues to grow until we get here the next time.
1040 // See https://github.com/quinn-rs/quinn/issues/1126
1041 return Ok(true);
1042 }
1043 }
1044
1045 Ok(false)
1046 }
1047
1048 fn forward_endpoint_events(&mut self) {
1049 while let Some(event) = self.inner.poll_endpoint_events() {
1050 // If the endpoint driver is gone, noop.
1051 let _ = self.endpoint_events.send((self.handle, event));
1052 }
1053 }
1054
1055 /// If this returns `Err`, the endpoint is dead, so the driver should exit immediately.
1056 fn process_conn_events(
1057 &mut self,
1058 shared: &Shared,
1059 cx: &mut Context,
1060 ) -> Result<(), ConnectionError> {
1061 loop {
1062 match self.conn_events.poll_recv(cx) {
1063 Poll::Ready(Some(ConnectionEvent::Rebind(socket))) => {
1064 self.socket = socket;
1065 self.io_poller = self.socket.clone().create_io_poller();
1066 self.inner.local_address_changed();
1067 }
1068 Poll::Ready(Some(ConnectionEvent::Proto(event))) => {
1069 self.inner.handle_event(event);
1070 }
1071 Poll::Ready(Some(ConnectionEvent::Close { reason, error_code })) => {
1072 self.close(error_code, reason, shared);
1073 }
1074 Poll::Ready(None) => {
1075 return Err(ConnectionError::TransportError(proto::TransportError {
1076 code: proto::TransportErrorCode::INTERNAL_ERROR,
1077 frame: None,
1078 reason: "endpoint driver future was dropped".to_string(),
1079 }));
1080 }
1081 Poll::Pending => {
1082 return Ok(());
1083 }
1084 }
1085 }
1086 }
1087
1088 fn forward_app_events(&mut self, shared: &Shared) {
1089 while let Some(event) = self.inner.poll() {
1090 use proto::Event::*;
1091 match event {
1092 HandshakeDataReady => {
1093 if let Some(x) = self.on_handshake_data.take() {
1094 let _ = x.send(());
1095 }
1096 }
1097 Connected => {
1098 self.connected = true;
1099 if let Some(x) = self.on_connected.take() {
1100 // We don't care if the on-connected future was dropped
1101 let _ = x.send(self.inner.accepted_0rtt());
1102 }
1103 if self.inner.side().is_client() && !self.inner.accepted_0rtt() {
1104 // Wake up rejected 0-RTT streams so they can fail immediately with
1105 // `ZeroRttRejected` errors.
1106 wake_all(&mut self.blocked_writers);
1107 wake_all(&mut self.blocked_readers);
1108 wake_all(&mut self.stopped);
1109 }
1110 }
1111 ConnectionLost { reason } => {
1112 self.terminate(reason, shared);
1113 }
1114 Stream(StreamEvent::Writable { id }) => wake_stream(id, &mut self.blocked_writers),
1115 Stream(StreamEvent::Opened { dir: Dir::Uni }) => {
1116 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1117 }
1118 Stream(StreamEvent::Opened { dir: Dir::Bi }) => {
1119 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1120 }
1121 DatagramReceived => {
1122 shared.datagram_received.notify_waiters();
1123 }
1124 DatagramsUnblocked => {
1125 shared.datagrams_unblocked.notify_waiters();
1126 }
1127 Stream(StreamEvent::Readable { id }) => wake_stream(id, &mut self.blocked_readers),
1128 Stream(StreamEvent::Available { dir }) => {
1129 // Might mean any number of streams are ready, so we wake up everyone
1130 shared.stream_budget_available[dir as usize].notify_waiters();
1131 }
1132 Stream(StreamEvent::Finished { id }) => wake_stream(id, &mut self.stopped),
1133 Stream(StreamEvent::Stopped { id, .. }) => {
1134 wake_stream(id, &mut self.stopped);
1135 wake_stream(id, &mut self.blocked_writers);
1136 }
1137 }
1138 }
1139 }
1140
1141 fn drive_timer(&mut self, cx: &mut Context) -> bool {
1142 // Check whether we need to (re)set the timer. If so, we must poll again to ensure the
1143 // timer is registered with the runtime (and check whether it's already
1144 // expired).
1145 match self.inner.poll_timeout() {
1146 Some(deadline) => {
1147 if let Some(delay) = &mut self.timer {
1148 // There is no need to reset the tokio timer if the deadline
1149 // did not change
1150 if self
1151 .timer_deadline
1152 .map(|current_deadline| current_deadline != deadline)
1153 .unwrap_or(true)
1154 {
1155 delay.as_mut().reset(deadline);
1156 }
1157 } else {
1158 self.timer = Some(self.runtime.new_timer(deadline));
1159 }
1160 // Store the actual expiration time of the timer
1161 self.timer_deadline = Some(deadline);
1162 }
1163 None => {
1164 self.timer_deadline = None;
1165 return false;
1166 }
1167 }
1168
1169 if self.timer_deadline.is_none() {
1170 return false;
1171 }
1172
1173 let delay = self
1174 .timer
1175 .as_mut()
1176 .expect("timer must exist in this state")
1177 .as_mut();
1178 if delay.poll(cx).is_pending() {
1179 // Since there wasn't a timeout event, there is nothing new
1180 // for the connection to do
1181 return false;
1182 }
1183
1184 // A timer expired, so the caller needs to check for
1185 // new transmits, which might cause new timers to be set.
1186 self.inner.handle_timeout(self.runtime.now());
1187 self.timer_deadline = None;
1188 true
1189 }
1190
1191 /// Wake up a blocked `Driver` task to process I/O
1192 pub(crate) fn wake(&mut self) {
1193 if let Some(x) = self.driver.take() {
1194 x.wake();
1195 }
1196 }
1197
1198 /// Used to wake up all blocked futures when the connection becomes closed for any reason
1199 fn terminate(&mut self, reason: ConnectionError, shared: &Shared) {
1200 self.error = Some(reason.clone());
1201 if let Some(x) = self.on_handshake_data.take() {
1202 let _ = x.send(());
1203 }
1204 wake_all(&mut self.blocked_writers);
1205 wake_all(&mut self.blocked_readers);
1206 shared.stream_budget_available[Dir::Uni as usize].notify_waiters();
1207 shared.stream_budget_available[Dir::Bi as usize].notify_waiters();
1208 shared.stream_incoming[Dir::Uni as usize].notify_waiters();
1209 shared.stream_incoming[Dir::Bi as usize].notify_waiters();
1210 shared.datagram_received.notify_waiters();
1211 shared.datagrams_unblocked.notify_waiters();
1212 if let Some(x) = self.on_connected.take() {
1213 let _ = x.send(false);
1214 }
1215 wake_all(&mut self.stopped);
1216 shared.closed.notify_waiters();
1217 }
1218
1219 fn close(&mut self, error_code: VarInt, reason: Bytes, shared: &Shared) {
1220 self.inner.close(self.runtime.now(), error_code, reason);
1221 self.terminate(ConnectionError::LocallyClosed, shared);
1222 self.wake();
1223 }
1224
1225 /// Close for a reason other than the application's explicit request
1226 pub(crate) fn implicit_close(&mut self, shared: &Shared) {
1227 self.close(0u32.into(), Bytes::new(), shared);
1228 }
1229
1230 pub(crate) fn check_0rtt(&self) -> Result<(), ()> {
1231 if self.inner.is_handshaking()
1232 || self.inner.accepted_0rtt()
1233 || self.inner.side().is_server()
1234 {
1235 Ok(())
1236 } else {
1237 Err(())
1238 }
1239 }
1240}
1241
1242impl Drop for State {
1243 fn drop(&mut self) {
1244 if !self.inner.is_drained() {
1245 // Ensure the endpoint can tidy up
1246 let _ = self
1247 .endpoint_events
1248 .send((self.handle, proto::EndpointEvent::drained()));
1249 }
1250 }
1251}
1252
1253impl fmt::Debug for State {
1254 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1255 f.debug_struct("State").field("inner", &self.inner).finish()
1256 }
1257}
1258
1259fn wake_stream(stream_id: StreamId, wakers: &mut FxHashMap<StreamId, Waker>) {
1260 if let Some(waker) = wakers.remove(&stream_id) {
1261 waker.wake();
1262 }
1263}
1264
1265fn wake_all(wakers: &mut FxHashMap<StreamId, Waker>) {
1266 wakers.drain().for_each(|(_, waker)| waker.wake())
1267}
1268
1269/// Errors that can arise when sending a datagram
1270#[derive(Debug, Error, Clone, Eq, PartialEq)]
1271pub enum SendDatagramError {
1272 /// The peer does not support receiving datagram frames
1273 #[error("datagrams not supported by peer")]
1274 UnsupportedByPeer,
1275 /// Datagram support is disabled locally
1276 #[error("datagram support disabled")]
1277 Disabled,
1278 /// The datagram is larger than the connection can currently accommodate
1279 ///
1280 /// Indicates that the path MTU minus overhead or the limit advertised by the peer has been
1281 /// exceeded.
1282 #[error("datagram too large")]
1283 TooLarge,
1284 /// The connection was lost
1285 #[error("connection lost")]
1286 ConnectionLost(#[from] ConnectionError),
1287}
1288
1289/// The maximum amount of datagrams which will be produced in a single `drive_transmit` call
1290///
1291/// This limits the amount of CPU resources consumed by datagram generation,
1292/// and allows other tasks (like receiving ACKs) to run in between.
1293const MAX_TRANSMIT_DATAGRAMS: usize = 20;
1294
1295/// The maximum amount of datagrams that are sent in a single transmit
1296///
1297/// This can be lower than the maximum platform capabilities, to avoid excessive
1298/// memory allocations when calling `poll_transmit()`. Benchmarks have shown
1299/// that numbers around 10 are a good compromise.
1300const MAX_TRANSMIT_SEGMENTS: usize = 10;