rcgen/
csr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use std::hash::Hash;

#[cfg(feature = "pem")]
use pem::Pem;
use pki_types::CertificateSigningRequestDer;

#[cfg(feature = "pem")]
use crate::ENCODE_CONFIG;
use crate::{
	key_pair::serialize_public_key_der, Certificate, CertificateParams, Error, Issuer, KeyPair,
	PublicKeyData, SignatureAlgorithm,
};
#[cfg(feature = "x509-parser")]
use crate::{DistinguishedName, SanType};

/// A public key, extracted from a CSR
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct PublicKey {
	raw: Vec<u8>,
	alg: &'static SignatureAlgorithm,
}

impl PublicKey {
	/// The algorithm used to generate the public key and sign the CSR.
	pub fn algorithm(&self) -> &SignatureAlgorithm {
		self.alg
	}
}

impl PublicKeyData for PublicKey {
	fn der_bytes(&self) -> &[u8] {
		&self.raw
	}

	fn algorithm(&self) -> &SignatureAlgorithm {
		self.alg
	}
}

/// A certificate signing request (CSR) that can be encoded to PEM or DER.
pub struct CertificateSigningRequest {
	pub(crate) der: CertificateSigningRequestDer<'static>,
}

impl CertificateSigningRequest {
	/// Get the PEM-encoded bytes of the certificate signing request.
	#[cfg(feature = "pem")]
	pub fn pem(&self) -> Result<String, Error> {
		let p = Pem::new("CERTIFICATE REQUEST", &*self.der);
		Ok(pem::encode_config(&p, ENCODE_CONFIG))
	}

	/// Get the DER-encoded bytes of the certificate signing request.
	///
	/// [`CertificateSigningRequestDer`] implements `Deref<Target = [u8]>` and `AsRef<[u8]>`,
	/// so you can easily extract the DER bytes from the return value.
	pub fn der(&self) -> &CertificateSigningRequestDer<'static> {
		&self.der
	}
}

impl From<CertificateSigningRequest> for CertificateSigningRequestDer<'static> {
	fn from(csr: CertificateSigningRequest) -> Self {
		csr.der
	}
}

/// Parameters for a certificate signing request
pub struct CertificateSigningRequestParams {
	/// Parameters for the certificate to be signed.
	pub params: CertificateParams,
	/// Public key to include in the certificate signing request.
	pub public_key: PublicKey,
}

impl CertificateSigningRequestParams {
	/// Parse a certificate signing request from the ASCII PEM format
	///
	/// See [`from_der`](Self::from_der) for more details.
	#[cfg(all(feature = "pem", feature = "x509-parser"))]
	pub fn from_pem(pem_str: &str) -> Result<Self, Error> {
		let csr = pem::parse(pem_str).or(Err(Error::CouldNotParseCertificationRequest))?;
		Self::from_der(&csr.contents().into())
	}

	/// Parse a certificate signing request from DER-encoded bytes
	///
	/// Currently, this only supports the `Subject Alternative Name` extension.
	/// On encountering other extensions, this function will return an error.
	///
	/// [`rustls_pemfile::csr()`] is often used to obtain a [`CertificateSigningRequestDer`] from
	/// PEM input. If you already have a byte slice containing DER, it can trivially be converted
	/// into [`CertificateSigningRequestDer`] using the [`Into`] trait.
	///
	/// [`rustls_pemfile::csr()`]: https://docs.rs/rustls-pemfile/latest/rustls_pemfile/fn.csr.html
	#[cfg(feature = "x509-parser")]
	pub fn from_der(csr: &CertificateSigningRequestDer<'_>) -> Result<Self, Error> {
		use crate::KeyUsagePurpose;
		use x509_parser::prelude::FromDer;

		let csr = x509_parser::certification_request::X509CertificationRequest::from_der(csr)
			.map_err(|_| Error::CouldNotParseCertificationRequest)?
			.1;
		csr.verify_signature().map_err(|_| Error::RingUnspecified)?;
		let alg_oid = csr
			.signature_algorithm
			.algorithm
			.iter()
			.ok_or(Error::CouldNotParseCertificationRequest)?
			.collect::<Vec<_>>();
		let alg = SignatureAlgorithm::from_oid(&alg_oid)?;

		let info = &csr.certification_request_info;
		let mut params = CertificateParams {
			distinguished_name: DistinguishedName::from_name(&info.subject)?,
			..CertificateParams::default()
		};
		let raw = info.subject_pki.subject_public_key.data.to_vec();

		if let Some(extensions) = csr.requested_extensions() {
			for ext in extensions {
				match ext {
					x509_parser::extensions::ParsedExtension::KeyUsage(key_usage) => {
						// This x509 parser stores flags in reversed bit BIT STRING order
						params.key_usages =
							KeyUsagePurpose::from_u16(key_usage.flags.reverse_bits());
					},
					x509_parser::extensions::ParsedExtension::SubjectAlternativeName(san) => {
						for name in &san.general_names {
							params
								.subject_alt_names
								.push(SanType::try_from_general(name)?);
						}
					},
					x509_parser::extensions::ParsedExtension::ExtendedKeyUsage(eku) => {
						if eku.any {
							params.insert_extended_key_usage(crate::ExtendedKeyUsagePurpose::Any);
						}
						if eku.server_auth {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::ServerAuth,
							);
						}
						if eku.client_auth {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::ClientAuth,
							);
						}
						if eku.code_signing {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::CodeSigning,
							);
						}
						if eku.email_protection {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::EmailProtection,
							);
						}
						if eku.time_stamping {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::TimeStamping,
							);
						}
						if eku.ocsp_signing {
							params.insert_extended_key_usage(
								crate::ExtendedKeyUsagePurpose::OcspSigning,
							);
						}
						if !eku.other.is_empty() {
							return Err(Error::UnsupportedExtension);
						}
					},
					_ => return Err(Error::UnsupportedExtension),
				}
			}
		}

		// Not yet handled:
		// * is_ca
		// * extended_key_usages
		// * name_constraints
		// and any other extensions.

		Ok(Self {
			params,
			public_key: PublicKey { alg, raw },
		})
	}

	/// Generate a new certificate based on the requested parameters, signed by the provided
	/// issuer.
	///
	/// The returned certificate will have its issuer field set to the subject of the provided
	/// `issuer`, and the authority key identifier extension will be populated using the subject
	/// public key of `issuer`. It will be signed by `issuer_key`.
	///
	/// Note that no validation of the `issuer` certificate is performed. Rcgen will not require
	/// the certificate to be a CA certificate, or have key usage extensions that allow signing.
	///
	/// The returned [`Certificate`] may be serialized using [`Certificate::der`] and
	/// [`Certificate::pem`].
	pub fn signed_by(
		self,
		issuer: &Certificate,
		issuer_key: &KeyPair,
	) -> Result<Certificate, Error> {
		let issuer = Issuer {
			distinguished_name: &issuer.params.distinguished_name,
			key_identifier_method: &issuer.params.key_identifier_method,
			key_usages: &issuer.params.key_usages,
			key_pair: issuer_key,
		};

		let der = self
			.params
			.serialize_der_with_signer(&self.public_key, issuer)?;
		let subject_public_key_info = yasna::construct_der(|writer| {
			serialize_public_key_der(&self.public_key, writer);
		});
		Ok(Certificate {
			params: self.params,
			subject_public_key_info,
			der,
		})
	}
}