rustls/
common_state.rs

1use alloc::boxed::Box;
2use alloc::vec::Vec;
3
4use pki_types::CertificateDer;
5
6use crate::crypto::SupportedKxGroup;
7use crate::enums::{AlertDescription, ContentType, HandshakeType, ProtocolVersion};
8use crate::error::{Error, InvalidMessage, PeerMisbehaved};
9use crate::hash_hs::HandshakeHash;
10use crate::log::{debug, error, warn};
11use crate::msgs::alert::AlertMessagePayload;
12use crate::msgs::base::Payload;
13use crate::msgs::codec::Codec;
14use crate::msgs::enums::{AlertLevel, KeyUpdateRequest};
15use crate::msgs::fragmenter::MessageFragmenter;
16use crate::msgs::handshake::{CertificateChain, HandshakeMessagePayload};
17use crate::msgs::message::{
18    Message, MessagePayload, OutboundChunks, OutboundOpaqueMessage, OutboundPlainMessage,
19    PlainMessage,
20};
21use crate::record_layer::PreEncryptAction;
22use crate::suites::{PartiallyExtractedSecrets, SupportedCipherSuite};
23#[cfg(feature = "tls12")]
24use crate::tls12::ConnectionSecrets;
25use crate::unbuffered::{EncryptError, InsufficientSizeError};
26use crate::vecbuf::ChunkVecBuffer;
27use crate::{quic, record_layer};
28
29/// Connection state common to both client and server connections.
30pub struct CommonState {
31    pub(crate) negotiated_version: Option<ProtocolVersion>,
32    pub(crate) handshake_kind: Option<HandshakeKind>,
33    pub(crate) side: Side,
34    pub(crate) record_layer: record_layer::RecordLayer,
35    pub(crate) suite: Option<SupportedCipherSuite>,
36    pub(crate) kx_state: KxState,
37    pub(crate) alpn_protocol: Option<Vec<u8>>,
38    pub(crate) aligned_handshake: bool,
39    pub(crate) may_send_application_data: bool,
40    pub(crate) may_receive_application_data: bool,
41    pub(crate) early_traffic: bool,
42    sent_fatal_alert: bool,
43    /// If we signaled end of stream.
44    pub(crate) has_sent_close_notify: bool,
45    /// If the peer has signaled end of stream.
46    pub(crate) has_received_close_notify: bool,
47    #[cfg(feature = "std")]
48    pub(crate) has_seen_eof: bool,
49    pub(crate) peer_certificates: Option<CertificateChain<'static>>,
50    message_fragmenter: MessageFragmenter,
51    pub(crate) received_plaintext: ChunkVecBuffer,
52    pub(crate) sendable_tls: ChunkVecBuffer,
53    queued_key_update_message: Option<Vec<u8>>,
54
55    /// Protocol whose key schedule should be used. Unused for TLS < 1.3.
56    pub(crate) protocol: Protocol,
57    pub(crate) quic: quic::Quic,
58    pub(crate) enable_secret_extraction: bool,
59    temper_counters: TemperCounters,
60    pub(crate) refresh_traffic_keys_pending: bool,
61    pub(crate) fips: bool,
62}
63
64impl CommonState {
65    pub(crate) fn new(side: Side) -> Self {
66        Self {
67            negotiated_version: None,
68            handshake_kind: None,
69            side,
70            record_layer: record_layer::RecordLayer::new(),
71            suite: None,
72            kx_state: KxState::default(),
73            alpn_protocol: None,
74            aligned_handshake: true,
75            may_send_application_data: false,
76            may_receive_application_data: false,
77            early_traffic: false,
78            sent_fatal_alert: false,
79            has_sent_close_notify: false,
80            has_received_close_notify: false,
81            #[cfg(feature = "std")]
82            has_seen_eof: false,
83            peer_certificates: None,
84            message_fragmenter: MessageFragmenter::default(),
85            received_plaintext: ChunkVecBuffer::new(Some(DEFAULT_RECEIVED_PLAINTEXT_LIMIT)),
86            sendable_tls: ChunkVecBuffer::new(Some(DEFAULT_BUFFER_LIMIT)),
87            queued_key_update_message: None,
88            protocol: Protocol::Tcp,
89            quic: quic::Quic::default(),
90            enable_secret_extraction: false,
91            temper_counters: TemperCounters::default(),
92            refresh_traffic_keys_pending: false,
93            fips: false,
94        }
95    }
96
97    /// Returns true if the caller should call [`Connection::write_tls`] as soon as possible.
98    ///
99    /// [`Connection::write_tls`]: crate::Connection::write_tls
100    pub fn wants_write(&self) -> bool {
101        !self.sendable_tls.is_empty()
102    }
103
104    /// Returns true if the connection is currently performing the TLS handshake.
105    ///
106    /// During this time plaintext written to the connection is buffered in memory. After
107    /// [`Connection::process_new_packets()`] has been called, this might start to return `false`
108    /// while the final handshake packets still need to be extracted from the connection's buffers.
109    ///
110    /// [`Connection::process_new_packets()`]: crate::Connection::process_new_packets
111    pub fn is_handshaking(&self) -> bool {
112        !(self.may_send_application_data && self.may_receive_application_data)
113    }
114
115    /// Retrieves the certificate chain or the raw public key used by the peer to authenticate.
116    ///
117    /// The order of the certificate chain is as it appears in the TLS
118    /// protocol: the first certificate relates to the peer, the
119    /// second certifies the first, the third certifies the second, and
120    /// so on.
121    ///
122    /// When using raw public keys, the first and only element is the raw public key.
123    ///
124    /// This is made available for both full and resumed handshakes.
125    ///
126    /// For clients, this is the certificate chain or the raw public key of the server.
127    ///
128    /// For servers, this is the certificate chain or the raw public key of the client,
129    /// if client authentication was completed.
130    ///
131    /// The return value is None until this value is available.
132    ///
133    /// Note: the return type of the 'certificate', when using raw public keys is `CertificateDer<'static>`
134    /// even though this should technically be a `SubjectPublicKeyInfoDer<'static>`.
135    /// This choice simplifies the API and ensures backwards compatibility.
136    pub fn peer_certificates(&self) -> Option<&[CertificateDer<'static>]> {
137        self.peer_certificates.as_deref()
138    }
139
140    /// Retrieves the protocol agreed with the peer via ALPN.
141    ///
142    /// A return value of `None` after handshake completion
143    /// means no protocol was agreed (because no protocols
144    /// were offered or accepted by the peer).
145    pub fn alpn_protocol(&self) -> Option<&[u8]> {
146        self.get_alpn_protocol()
147    }
148
149    /// Retrieves the ciphersuite agreed with the peer.
150    ///
151    /// This returns None until the ciphersuite is agreed.
152    pub fn negotiated_cipher_suite(&self) -> Option<SupportedCipherSuite> {
153        self.suite
154    }
155
156    /// Retrieves the key exchange group agreed with the peer.
157    ///
158    /// This function may return `None` depending on the state of the connection,
159    /// the type of handshake, and the protocol version.
160    ///
161    /// If [`CommonState::is_handshaking()`] is true this function will return `None`.
162    /// Similarly, if the [`CommonState::handshake_kind()`] is [`HandshakeKind::Resumed`]
163    /// and the [`CommonState::protocol_version()`] is TLS 1.2, then no key exchange will have
164    /// occurred and this function will return `None`.
165    pub fn negotiated_key_exchange_group(&self) -> Option<&'static dyn SupportedKxGroup> {
166        match self.kx_state {
167            KxState::Complete(group) => Some(group),
168            _ => None,
169        }
170    }
171
172    /// Retrieves the protocol version agreed with the peer.
173    ///
174    /// This returns `None` until the version is agreed.
175    pub fn protocol_version(&self) -> Option<ProtocolVersion> {
176        self.negotiated_version
177    }
178
179    /// Which kind of handshake was performed.
180    ///
181    /// This tells you whether the handshake was a resumption or not.
182    ///
183    /// This will return `None` before it is known which sort of
184    /// handshake occurred.
185    pub fn handshake_kind(&self) -> Option<HandshakeKind> {
186        self.handshake_kind
187    }
188
189    pub(crate) fn is_tls13(&self) -> bool {
190        matches!(self.negotiated_version, Some(ProtocolVersion::TLSv1_3))
191    }
192
193    pub(crate) fn process_main_protocol<Data>(
194        &mut self,
195        msg: Message<'_>,
196        mut state: Box<dyn State<Data>>,
197        data: &mut Data,
198        sendable_plaintext: Option<&mut ChunkVecBuffer>,
199    ) -> Result<Box<dyn State<Data>>, Error> {
200        // For TLS1.2, outside of the handshake, send rejection alerts for
201        // renegotiation requests.  These can occur any time.
202        if self.may_receive_application_data && !self.is_tls13() {
203            let reject_ty = match self.side {
204                Side::Client => HandshakeType::HelloRequest,
205                Side::Server => HandshakeType::ClientHello,
206            };
207            if msg.is_handshake_type(reject_ty) {
208                self.temper_counters
209                    .received_renegotiation_request()?;
210                self.send_warning_alert(AlertDescription::NoRenegotiation);
211                return Ok(state);
212            }
213        }
214
215        let mut cx = Context {
216            common: self,
217            data,
218            sendable_plaintext,
219        };
220        match state.handle(&mut cx, msg) {
221            Ok(next) => {
222                state = next.into_owned();
223                Ok(state)
224            }
225            Err(e @ Error::InappropriateMessage { .. })
226            | Err(e @ Error::InappropriateHandshakeMessage { .. }) => {
227                Err(self.send_fatal_alert(AlertDescription::UnexpectedMessage, e))
228            }
229            Err(e) => Err(e),
230        }
231    }
232
233    pub(crate) fn write_plaintext(
234        &mut self,
235        payload: OutboundChunks<'_>,
236        outgoing_tls: &mut [u8],
237    ) -> Result<usize, EncryptError> {
238        if payload.is_empty() {
239            return Ok(0);
240        }
241
242        let fragments = self
243            .message_fragmenter
244            .fragment_payload(
245                ContentType::ApplicationData,
246                ProtocolVersion::TLSv1_2,
247                payload.clone(),
248            );
249
250        for f in 0..fragments.len() {
251            match self
252                .record_layer
253                .pre_encrypt_action(f as u64)
254            {
255                PreEncryptAction::Nothing => {}
256                PreEncryptAction::RefreshOrClose => match self.negotiated_version {
257                    Some(ProtocolVersion::TLSv1_3) => {
258                        // driven by caller, as we don't have the `State` here
259                        self.refresh_traffic_keys_pending = true;
260                    }
261                    _ => {
262                        error!(
263                            "traffic keys exhausted, closing connection to prevent security failure"
264                        );
265                        self.send_close_notify();
266                        return Err(EncryptError::EncryptExhausted);
267                    }
268                },
269                PreEncryptAction::Refuse => {
270                    return Err(EncryptError::EncryptExhausted);
271                }
272            }
273        }
274
275        self.perhaps_write_key_update();
276
277        self.check_required_size(outgoing_tls, fragments)?;
278
279        let fragments = self
280            .message_fragmenter
281            .fragment_payload(
282                ContentType::ApplicationData,
283                ProtocolVersion::TLSv1_2,
284                payload,
285            );
286
287        Ok(self.write_fragments(outgoing_tls, fragments))
288    }
289
290    // Changing the keys must not span any fragmented handshake
291    // messages.  Otherwise the defragmented messages will have
292    // been protected with two different record layer protections,
293    // which is illegal.  Not mentioned in RFC.
294    pub(crate) fn check_aligned_handshake(&mut self) -> Result<(), Error> {
295        if !self.aligned_handshake {
296            Err(self.send_fatal_alert(
297                AlertDescription::UnexpectedMessage,
298                PeerMisbehaved::KeyEpochWithPendingFragment,
299            ))
300        } else {
301            Ok(())
302        }
303    }
304
305    /// Fragment `m`, encrypt the fragments, and then queue
306    /// the encrypted fragments for sending.
307    pub(crate) fn send_msg_encrypt(&mut self, m: PlainMessage) {
308        let iter = self
309            .message_fragmenter
310            .fragment_message(&m);
311        for m in iter {
312            self.send_single_fragment(m);
313        }
314    }
315
316    /// Like send_msg_encrypt, but operate on an appdata directly.
317    fn send_appdata_encrypt(&mut self, payload: OutboundChunks<'_>, limit: Limit) -> usize {
318        // Here, the limit on sendable_tls applies to encrypted data,
319        // but we're respecting it for plaintext data -- so we'll
320        // be out by whatever the cipher+record overhead is.  That's a
321        // constant and predictable amount, so it's not a terrible issue.
322        let len = match limit {
323            #[cfg(feature = "std")]
324            Limit::Yes => self
325                .sendable_tls
326                .apply_limit(payload.len()),
327            Limit::No => payload.len(),
328        };
329
330        let iter = self
331            .message_fragmenter
332            .fragment_payload(
333                ContentType::ApplicationData,
334                ProtocolVersion::TLSv1_2,
335                payload.split_at(len).0,
336            );
337        for m in iter {
338            self.send_single_fragment(m);
339        }
340
341        len
342    }
343
344    fn send_single_fragment(&mut self, m: OutboundPlainMessage<'_>) {
345        if m.typ == ContentType::Alert {
346            // Alerts are always sendable -- never quashed by a PreEncryptAction.
347            let em = self.record_layer.encrypt_outgoing(m);
348            self.queue_tls_message(em);
349            return;
350        }
351
352        match self
353            .record_layer
354            .next_pre_encrypt_action()
355        {
356            PreEncryptAction::Nothing => {}
357
358            // Close connection once we start to run out of
359            // sequence space.
360            PreEncryptAction::RefreshOrClose => {
361                match self.negotiated_version {
362                    Some(ProtocolVersion::TLSv1_3) => {
363                        // driven by caller, as we don't have the `State` here
364                        self.refresh_traffic_keys_pending = true;
365                    }
366                    _ => {
367                        error!(
368                            "traffic keys exhausted, closing connection to prevent security failure"
369                        );
370                        self.send_close_notify();
371                        return;
372                    }
373                }
374            }
375
376            // Refuse to wrap counter at all costs.  This
377            // is basically untestable unfortunately.
378            PreEncryptAction::Refuse => {
379                return;
380            }
381        };
382
383        let em = self.record_layer.encrypt_outgoing(m);
384        self.queue_tls_message(em);
385    }
386
387    fn send_plain_non_buffering(&mut self, payload: OutboundChunks<'_>, limit: Limit) -> usize {
388        debug_assert!(self.may_send_application_data);
389        debug_assert!(self.record_layer.is_encrypting());
390
391        if payload.is_empty() {
392            // Don't send empty fragments.
393            return 0;
394        }
395
396        self.send_appdata_encrypt(payload, limit)
397    }
398
399    /// Mark the connection as ready to send application data.
400    ///
401    /// Also flush `sendable_plaintext` if it is `Some`.
402    pub(crate) fn start_outgoing_traffic(
403        &mut self,
404        sendable_plaintext: &mut Option<&mut ChunkVecBuffer>,
405    ) {
406        self.may_send_application_data = true;
407        if let Some(sendable_plaintext) = sendable_plaintext {
408            self.flush_plaintext(sendable_plaintext);
409        }
410    }
411
412    /// Mark the connection as ready to send and receive application data.
413    ///
414    /// Also flush `sendable_plaintext` if it is `Some`.
415    pub(crate) fn start_traffic(&mut self, sendable_plaintext: &mut Option<&mut ChunkVecBuffer>) {
416        self.may_receive_application_data = true;
417        self.start_outgoing_traffic(sendable_plaintext);
418    }
419
420    /// Send any buffered plaintext.  Plaintext is buffered if
421    /// written during handshake.
422    fn flush_plaintext(&mut self, sendable_plaintext: &mut ChunkVecBuffer) {
423        if !self.may_send_application_data {
424            return;
425        }
426
427        while let Some(buf) = sendable_plaintext.pop() {
428            self.send_plain_non_buffering(buf.as_slice().into(), Limit::No);
429        }
430    }
431
432    // Put m into sendable_tls for writing.
433    fn queue_tls_message(&mut self, m: OutboundOpaqueMessage) {
434        self.perhaps_write_key_update();
435        self.sendable_tls.append(m.encode());
436    }
437
438    pub(crate) fn perhaps_write_key_update(&mut self) {
439        if let Some(message) = self.queued_key_update_message.take() {
440            self.sendable_tls.append(message);
441        }
442    }
443
444    /// Send a raw TLS message, fragmenting it if needed.
445    pub(crate) fn send_msg(&mut self, m: Message<'_>, must_encrypt: bool) {
446        {
447            if let Protocol::Quic = self.protocol {
448                if let MessagePayload::Alert(alert) = m.payload {
449                    self.quic.alert = Some(alert.description);
450                } else {
451                    debug_assert!(
452                        matches!(
453                            m.payload,
454                            MessagePayload::Handshake { .. } | MessagePayload::HandshakeFlight(_)
455                        ),
456                        "QUIC uses TLS for the cryptographic handshake only"
457                    );
458                    let mut bytes = Vec::new();
459                    m.payload.encode(&mut bytes);
460                    self.quic
461                        .hs_queue
462                        .push_back((must_encrypt, bytes));
463                }
464                return;
465            }
466        }
467        if !must_encrypt {
468            let msg = &m.into();
469            let iter = self
470                .message_fragmenter
471                .fragment_message(msg);
472            for m in iter {
473                self.queue_tls_message(m.to_unencrypted_opaque());
474            }
475        } else {
476            self.send_msg_encrypt(m.into());
477        }
478    }
479
480    pub(crate) fn take_received_plaintext(&mut self, bytes: Payload<'_>) {
481        self.received_plaintext
482            .append(bytes.into_vec());
483    }
484
485    #[cfg(feature = "tls12")]
486    pub(crate) fn start_encryption_tls12(&mut self, secrets: &ConnectionSecrets, side: Side) {
487        let (dec, enc) = secrets.make_cipher_pair(side);
488        self.record_layer
489            .prepare_message_encrypter(
490                enc,
491                secrets
492                    .suite()
493                    .common
494                    .confidentiality_limit,
495            );
496        self.record_layer
497            .prepare_message_decrypter(dec);
498    }
499
500    pub(crate) fn missing_extension(&mut self, why: PeerMisbehaved) -> Error {
501        self.send_fatal_alert(AlertDescription::MissingExtension, why)
502    }
503
504    fn send_warning_alert(&mut self, desc: AlertDescription) {
505        warn!("Sending warning alert {:?}", desc);
506        self.send_warning_alert_no_log(desc);
507    }
508
509    pub(crate) fn process_alert(&mut self, alert: &AlertMessagePayload) -> Result<(), Error> {
510        // Reject unknown AlertLevels.
511        if let AlertLevel::Unknown(_) = alert.level {
512            return Err(self.send_fatal_alert(
513                AlertDescription::IllegalParameter,
514                Error::AlertReceived(alert.description),
515            ));
516        }
517
518        // If we get a CloseNotify, make a note to declare EOF to our
519        // caller.  But do not treat unauthenticated alerts like this.
520        if self.may_receive_application_data && alert.description == AlertDescription::CloseNotify {
521            self.has_received_close_notify = true;
522            return Ok(());
523        }
524
525        // Warnings are nonfatal for TLS1.2, but outlawed in TLS1.3
526        // (except, for no good reason, user_cancelled).
527        let err = Error::AlertReceived(alert.description);
528        if alert.level == AlertLevel::Warning {
529            self.temper_counters
530                .received_warning_alert()?;
531            if self.is_tls13() && alert.description != AlertDescription::UserCanceled {
532                return Err(self.send_fatal_alert(AlertDescription::DecodeError, err));
533            }
534
535            // Some implementations send pointless `user_canceled` alerts, don't log them
536            // in release mode (https://bugs.openjdk.org/browse/JDK-8323517).
537            if alert.description != AlertDescription::UserCanceled || cfg!(debug_assertions) {
538                warn!("TLS alert warning received: {alert:?}");
539            }
540
541            return Ok(());
542        }
543
544        Err(err)
545    }
546
547    pub(crate) fn send_cert_verify_error_alert(&mut self, err: Error) -> Error {
548        self.send_fatal_alert(
549            match &err {
550                Error::InvalidCertificate(e) => e.clone().into(),
551                Error::PeerMisbehaved(_) => AlertDescription::IllegalParameter,
552                _ => AlertDescription::HandshakeFailure,
553            },
554            err,
555        )
556    }
557
558    pub(crate) fn send_fatal_alert(
559        &mut self,
560        desc: AlertDescription,
561        err: impl Into<Error>,
562    ) -> Error {
563        debug_assert!(!self.sent_fatal_alert);
564        let m = Message::build_alert(AlertLevel::Fatal, desc);
565        self.send_msg(m, self.record_layer.is_encrypting());
566        self.sent_fatal_alert = true;
567        err.into()
568    }
569
570    /// Queues a `close_notify` warning alert to be sent in the next
571    /// [`Connection::write_tls`] call.  This informs the peer that the
572    /// connection is being closed.
573    ///
574    /// Does nothing if any `close_notify` or fatal alert was already sent.
575    ///
576    /// [`Connection::write_tls`]: crate::Connection::write_tls
577    pub fn send_close_notify(&mut self) {
578        if self.sent_fatal_alert {
579            return;
580        }
581        debug!("Sending warning alert {:?}", AlertDescription::CloseNotify);
582        self.sent_fatal_alert = true;
583        self.has_sent_close_notify = true;
584        self.send_warning_alert_no_log(AlertDescription::CloseNotify);
585    }
586
587    pub(crate) fn eager_send_close_notify(
588        &mut self,
589        outgoing_tls: &mut [u8],
590    ) -> Result<usize, EncryptError> {
591        self.send_close_notify();
592        self.check_required_size(outgoing_tls, [].into_iter())?;
593        Ok(self.write_fragments(outgoing_tls, [].into_iter()))
594    }
595
596    fn send_warning_alert_no_log(&mut self, desc: AlertDescription) {
597        let m = Message::build_alert(AlertLevel::Warning, desc);
598        self.send_msg(m, self.record_layer.is_encrypting());
599    }
600
601    fn check_required_size<'a>(
602        &self,
603        outgoing_tls: &mut [u8],
604        fragments: impl Iterator<Item = OutboundPlainMessage<'a>>,
605    ) -> Result<(), EncryptError> {
606        let mut required_size = self.sendable_tls.len();
607
608        for m in fragments {
609            required_size += m.encoded_len(&self.record_layer);
610        }
611
612        if required_size > outgoing_tls.len() {
613            return Err(EncryptError::InsufficientSize(InsufficientSizeError {
614                required_size,
615            }));
616        }
617
618        Ok(())
619    }
620
621    fn write_fragments<'a>(
622        &mut self,
623        outgoing_tls: &mut [u8],
624        fragments: impl Iterator<Item = OutboundPlainMessage<'a>>,
625    ) -> usize {
626        let mut written = 0;
627
628        // Any pre-existing encrypted messages in `sendable_tls` must
629        // be output before encrypting any of the `fragments`.
630        while let Some(message) = self.sendable_tls.pop() {
631            let len = message.len();
632            outgoing_tls[written..written + len].copy_from_slice(&message);
633            written += len;
634        }
635
636        for m in fragments {
637            let em = self
638                .record_layer
639                .encrypt_outgoing(m)
640                .encode();
641
642            let len = em.len();
643            outgoing_tls[written..written + len].copy_from_slice(&em);
644            written += len;
645        }
646
647        written
648    }
649
650    pub(crate) fn set_max_fragment_size(&mut self, new: Option<usize>) -> Result<(), Error> {
651        self.message_fragmenter
652            .set_max_fragment_size(new)
653    }
654
655    pub(crate) fn get_alpn_protocol(&self) -> Option<&[u8]> {
656        self.alpn_protocol
657            .as_ref()
658            .map(AsRef::as_ref)
659    }
660
661    /// Returns true if the caller should call [`Connection::read_tls`] as soon
662    /// as possible.
663    ///
664    /// If there is pending plaintext data to read with [`Connection::reader`],
665    /// this returns false.  If your application respects this mechanism,
666    /// only one full TLS message will be buffered by rustls.
667    ///
668    /// [`Connection::reader`]: crate::Connection::reader
669    /// [`Connection::read_tls`]: crate::Connection::read_tls
670    pub fn wants_read(&self) -> bool {
671        // We want to read more data all the time, except when we have unprocessed plaintext.
672        // This provides back-pressure to the TCP buffers. We also don't want to read more after
673        // the peer has sent us a close notification.
674        //
675        // In the handshake case we don't have readable plaintext before the handshake has
676        // completed, but also don't want to read if we still have sendable tls.
677        self.received_plaintext.is_empty()
678            && !self.has_received_close_notify
679            && (self.may_send_application_data || self.sendable_tls.is_empty())
680    }
681
682    pub(crate) fn current_io_state(&self) -> IoState {
683        IoState {
684            tls_bytes_to_write: self.sendable_tls.len(),
685            plaintext_bytes_to_read: self.received_plaintext.len(),
686            peer_has_closed: self.has_received_close_notify,
687        }
688    }
689
690    pub(crate) fn is_quic(&self) -> bool {
691        self.protocol == Protocol::Quic
692    }
693
694    pub(crate) fn should_update_key(
695        &mut self,
696        key_update_request: &KeyUpdateRequest,
697    ) -> Result<bool, Error> {
698        self.temper_counters
699            .received_key_update_request()?;
700
701        match key_update_request {
702            KeyUpdateRequest::UpdateNotRequested => Ok(false),
703            KeyUpdateRequest::UpdateRequested => Ok(self.queued_key_update_message.is_none()),
704            _ => Err(self.send_fatal_alert(
705                AlertDescription::IllegalParameter,
706                InvalidMessage::InvalidKeyUpdate,
707            )),
708        }
709    }
710
711    pub(crate) fn enqueue_key_update_notification(&mut self) {
712        let message = PlainMessage::from(Message::build_key_update_notify());
713        self.queued_key_update_message = Some(
714            self.record_layer
715                .encrypt_outgoing(message.borrow_outbound())
716                .encode(),
717        );
718    }
719
720    pub(crate) fn received_tls13_change_cipher_spec(&mut self) -> Result<(), Error> {
721        self.temper_counters
722            .received_tls13_change_cipher_spec()
723    }
724}
725
726#[cfg(feature = "std")]
727impl CommonState {
728    /// Send plaintext application data, fragmenting and
729    /// encrypting it as it goes out.
730    ///
731    /// If internal buffers are too small, this function will not accept
732    /// all the data.
733    pub(crate) fn buffer_plaintext(
734        &mut self,
735        payload: OutboundChunks<'_>,
736        sendable_plaintext: &mut ChunkVecBuffer,
737    ) -> usize {
738        self.perhaps_write_key_update();
739        self.send_plain(payload, Limit::Yes, sendable_plaintext)
740    }
741
742    pub(crate) fn send_early_plaintext(&mut self, data: &[u8]) -> usize {
743        debug_assert!(self.early_traffic);
744        debug_assert!(self.record_layer.is_encrypting());
745
746        if data.is_empty() {
747            // Don't send empty fragments.
748            return 0;
749        }
750
751        self.send_appdata_encrypt(data.into(), Limit::Yes)
752    }
753
754    /// Encrypt and send some plaintext `data`.  `limit` controls
755    /// whether the per-connection buffer limits apply.
756    ///
757    /// Returns the number of bytes written from `data`: this might
758    /// be less than `data.len()` if buffer limits were exceeded.
759    fn send_plain(
760        &mut self,
761        payload: OutboundChunks<'_>,
762        limit: Limit,
763        sendable_plaintext: &mut ChunkVecBuffer,
764    ) -> usize {
765        if !self.may_send_application_data {
766            // If we haven't completed handshaking, buffer
767            // plaintext to send once we do.
768            let len = match limit {
769                Limit::Yes => sendable_plaintext.append_limited_copy(payload),
770                Limit::No => sendable_plaintext.append(payload.to_vec()),
771            };
772            return len;
773        }
774
775        self.send_plain_non_buffering(payload, limit)
776    }
777}
778
779/// Describes which sort of handshake happened.
780#[derive(Debug, PartialEq, Clone, Copy)]
781pub enum HandshakeKind {
782    /// A full handshake.
783    ///
784    /// This is the typical TLS connection initiation process when resumption is
785    /// not yet unavailable, and the initial `ClientHello` was accepted by the server.
786    Full,
787
788    /// A full TLS1.3 handshake, with an extra round-trip for a `HelloRetryRequest`.
789    ///
790    /// The server can respond with a `HelloRetryRequest` if the initial `ClientHello`
791    /// is unacceptable for several reasons, the most likely if no supported key
792    /// shares were offered by the client.
793    FullWithHelloRetryRequest,
794
795    /// A resumed handshake.
796    ///
797    /// Resumed handshakes involve fewer round trips and less cryptography than
798    /// full ones, but can only happen when the peers have previously done a full
799    /// handshake together, and then remember data about it.
800    Resumed,
801}
802
803/// Values of this structure are returned from [`Connection::process_new_packets`]
804/// and tell the caller the current I/O state of the TLS connection.
805///
806/// [`Connection::process_new_packets`]: crate::Connection::process_new_packets
807#[derive(Debug, Eq, PartialEq)]
808pub struct IoState {
809    tls_bytes_to_write: usize,
810    plaintext_bytes_to_read: usize,
811    peer_has_closed: bool,
812}
813
814impl IoState {
815    /// How many bytes could be written by [`Connection::write_tls`] if called
816    /// right now.  A non-zero value implies [`CommonState::wants_write`].
817    ///
818    /// [`Connection::write_tls`]: crate::Connection::write_tls
819    pub fn tls_bytes_to_write(&self) -> usize {
820        self.tls_bytes_to_write
821    }
822
823    /// How many plaintext bytes could be obtained via [`std::io::Read`]
824    /// without further I/O.
825    pub fn plaintext_bytes_to_read(&self) -> usize {
826        self.plaintext_bytes_to_read
827    }
828
829    /// True if the peer has sent us a close_notify alert.  This is
830    /// the TLS mechanism to securely half-close a TLS connection,
831    /// and signifies that the peer will not send any further data
832    /// on this connection.
833    ///
834    /// This is also signalled via returning `Ok(0)` from
835    /// [`std::io::Read`], after all the received bytes have been
836    /// retrieved.
837    pub fn peer_has_closed(&self) -> bool {
838        self.peer_has_closed
839    }
840}
841
842pub(crate) trait State<Data>: Send + Sync {
843    fn handle<'m>(
844        self: Box<Self>,
845        cx: &mut Context<'_, Data>,
846        message: Message<'m>,
847    ) -> Result<Box<dyn State<Data> + 'm>, Error>
848    where
849        Self: 'm;
850
851    fn export_keying_material(
852        &self,
853        _output: &mut [u8],
854        _label: &[u8],
855        _context: Option<&[u8]>,
856    ) -> Result<(), Error> {
857        Err(Error::HandshakeNotComplete)
858    }
859
860    fn extract_secrets(&self) -> Result<PartiallyExtractedSecrets, Error> {
861        Err(Error::HandshakeNotComplete)
862    }
863
864    fn send_key_update_request(&mut self, _common: &mut CommonState) -> Result<(), Error> {
865        Err(Error::HandshakeNotComplete)
866    }
867
868    fn handle_decrypt_error(&self) {}
869
870    fn into_owned(self: Box<Self>) -> Box<dyn State<Data> + 'static>;
871}
872
873pub(crate) struct Context<'a, Data> {
874    pub(crate) common: &'a mut CommonState,
875    pub(crate) data: &'a mut Data,
876    /// Buffered plaintext. This is `Some` if any plaintext was written during handshake and `None`
877    /// otherwise.
878    pub(crate) sendable_plaintext: Option<&'a mut ChunkVecBuffer>,
879}
880
881/// Side of the connection.
882#[derive(Clone, Copy, Debug, PartialEq)]
883pub enum Side {
884    /// A client initiates the connection.
885    Client,
886    /// A server waits for a client to connect.
887    Server,
888}
889
890impl Side {
891    pub(crate) fn peer(&self) -> Self {
892        match self {
893            Self::Client => Self::Server,
894            Self::Server => Self::Client,
895        }
896    }
897}
898
899#[derive(Copy, Clone, Eq, PartialEq, Debug)]
900pub(crate) enum Protocol {
901    Tcp,
902    Quic,
903}
904
905enum Limit {
906    #[cfg(feature = "std")]
907    Yes,
908    No,
909}
910
911/// Tracking technically-allowed protocol actions
912/// that we limit to avoid denial-of-service vectors.
913struct TemperCounters {
914    allowed_warning_alerts: u8,
915    allowed_renegotiation_requests: u8,
916    allowed_key_update_requests: u8,
917    allowed_middlebox_ccs: u8,
918}
919
920impl TemperCounters {
921    fn received_warning_alert(&mut self) -> Result<(), Error> {
922        match self.allowed_warning_alerts {
923            0 => Err(PeerMisbehaved::TooManyWarningAlertsReceived.into()),
924            _ => {
925                self.allowed_warning_alerts -= 1;
926                Ok(())
927            }
928        }
929    }
930
931    fn received_renegotiation_request(&mut self) -> Result<(), Error> {
932        match self.allowed_renegotiation_requests {
933            0 => Err(PeerMisbehaved::TooManyRenegotiationRequests.into()),
934            _ => {
935                self.allowed_renegotiation_requests -= 1;
936                Ok(())
937            }
938        }
939    }
940
941    fn received_key_update_request(&mut self) -> Result<(), Error> {
942        match self.allowed_key_update_requests {
943            0 => Err(PeerMisbehaved::TooManyKeyUpdateRequests.into()),
944            _ => {
945                self.allowed_key_update_requests -= 1;
946                Ok(())
947            }
948        }
949    }
950
951    fn received_tls13_change_cipher_spec(&mut self) -> Result<(), Error> {
952        match self.allowed_middlebox_ccs {
953            0 => Err(PeerMisbehaved::IllegalMiddleboxChangeCipherSpec.into()),
954            _ => {
955                self.allowed_middlebox_ccs -= 1;
956                Ok(())
957            }
958        }
959    }
960}
961
962impl Default for TemperCounters {
963    fn default() -> Self {
964        Self {
965            // cf. BoringSSL `kMaxWarningAlerts`
966            // <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L137-L139>
967            allowed_warning_alerts: 4,
968
969            // we rebuff renegotiation requests with a `NoRenegotiation` warning alerts.
970            // a second request after this is fatal.
971            allowed_renegotiation_requests: 1,
972
973            // cf. BoringSSL `kMaxKeyUpdates`
974            // <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls13_both.cc#L35-L38>
975            allowed_key_update_requests: 32,
976
977            // At most two CCS are allowed: one after each ClientHello (recall a second
978            // ClientHello happens after a HelloRetryRequest).
979            //
980            // note BoringSSL allows up to 32.
981            allowed_middlebox_ccs: 2,
982        }
983    }
984}
985
986#[derive(Debug, Default)]
987pub(crate) enum KxState {
988    #[default]
989    None,
990    Start(&'static dyn SupportedKxGroup),
991    Complete(&'static dyn SupportedKxGroup),
992}
993
994impl KxState {
995    pub(crate) fn complete(&mut self) {
996        debug_assert!(matches!(self, Self::Start(_)));
997        if let Self::Start(group) = self {
998            *self = Self::Complete(*group);
999        }
1000    }
1001}
1002
1003pub(crate) struct HandshakeFlight<'a, const TLS13: bool> {
1004    pub(crate) transcript: &'a mut HandshakeHash,
1005    body: Vec<u8>,
1006}
1007
1008impl<'a, const TLS13: bool> HandshakeFlight<'a, TLS13> {
1009    pub(crate) fn new(transcript: &'a mut HandshakeHash) -> Self {
1010        Self {
1011            transcript,
1012            body: Vec::new(),
1013        }
1014    }
1015
1016    pub(crate) fn add(&mut self, hs: HandshakeMessagePayload<'_>) {
1017        let start_len = self.body.len();
1018        hs.encode(&mut self.body);
1019        self.transcript
1020            .add(&self.body[start_len..]);
1021    }
1022
1023    pub(crate) fn finish(self, common: &mut CommonState) {
1024        common.send_msg(
1025            Message {
1026                version: match TLS13 {
1027                    true => ProtocolVersion::TLSv1_3,
1028                    false => ProtocolVersion::TLSv1_2,
1029                },
1030                payload: MessagePayload::HandshakeFlight(Payload::new(self.body)),
1031            },
1032            TLS13,
1033        );
1034    }
1035}
1036
1037#[cfg(feature = "tls12")]
1038pub(crate) type HandshakeFlightTls12<'a> = HandshakeFlight<'a, false>;
1039pub(crate) type HandshakeFlightTls13<'a> = HandshakeFlight<'a, true>;
1040
1041const DEFAULT_RECEIVED_PLAINTEXT_LIMIT: usize = 16 * 1024;
1042pub(crate) const DEFAULT_BUFFER_LIMIT: usize = 64 * 1024;